D Specification

D Specification
05/02/2007 snapshot

D Specification

Contents

o4 o7) OO PSPS T 3
IMIOAUIES. ...ttt ettt sttt et b et et e s et et e st e e ae e bt et e eat e bt et e e neebeenee 17
DIECIATATIONS. ...ttt ettt ettt ettt e b e et e bt e s ab e e bt e enbeebeeeat e e bt e enbeenbeesabeenbeeenbeennes 23
G oL TSRO RURUPTUSRRPRRRRPR 31
PLOPEITIES. ..ttt ettt e b e et et e st e bt e e ab e e bt e eat e e bt e enb e e bt e st e e bt e enbeenes 35
ABITIDULES ..ottt ettt et b ettt e et e bt e a e e a et e b e bt e bt et et ebeenee 38
PIragmmas......coouieiiiiiiie ettt ettt e sttt e sttt et e e sab e e eaaeeeaa 44
EXPT@SSIONS. .. vevteteente ettt sttt ettt ettt et et et e e s et e bt e st e ea e et e eaeesa e e bt entees e e bt entesseebeeneas 46
N 115 10153 11O O OO PSPPIt 64
ATTAYS .ttt e h e et sh e et e e h e et eh et et e e bt et e e e ht e e bt e eat e e beenate e b e naee 82
ASSOCTALIVE AITAYS. +eveveevrereertetestesseetesseeseeseessetessessessessesseeseessessessessessessessessesssessessessensessessensenns 93
SHUCES & UIMIOMS. ..c.eeentieiiieieetiete ettt ettt ettt ettt e bt et esb et e et e sbe e bt estesbe e teestenaeensesaeenseennes 97
CLASSES .ttt ettt ettt et ettt ettt et e s et e et e e at e e bt e e et e e bt e e at e e bt e ea bt e bt e e ab e e beeeabe e bt e enbeeneeeanean 100
INEEIEACES . .ottt ettt et b et s a bttt et e b e et e naeenne 114
EIUINIS. ¢ttt ettt ettt et e e bt e nt e e st et e e nae e st e nbeene e st e teeneenseenteeneennes 117
FUNCHIOMS .ottt ettt ettt et st e bt et e st e bt et e satenaeenneeneas 119
Operator OVETIOAdING.eoiueiiiieiiiieiie ettt et ettt e st e bt e e b e e sbeesateenbeeens 134
TOIMIPIALES. ..ttt ettt ettt ettt s h et et h et et she ettt e he e bt entesae e 141
IMEXATIS ..t ttenteeiteeeeeteeete et et e et e st e enteeste st ense e st e seensesseenseenseeseenseensanseanseensesseensesssenseenseensenseensenneans 152
(00 111 101 SO PP PP UPTOPRRPRTRPRO 157
Conditional COMPIIALION. ...eveeveriiertreieeierteeteste st eteeee e eteseesseeseesseeseensesseenseensesseenseensenseenes 160
HaNAING EITOTS. ... cotieiiieieieeeseee ettt ettt st et eate bt et e saeenaeenees 167
Garbage COlLECHION.veeutieiiteiee ettt et ettt et e sttt e s it e e bt e st e e bt e enbeebeesnseanseeeas 170
FLOAHNG POINL. ...ttt ettt ettt et st esae et e st e bt et e saeenaeenneeneas 174
INQINE ASSEIMBIET.c.eiiiiiieiieete ettt ettt e sb e sttt e st e bt e e b e eeeas 177
Documentation COMIMEIIES.e.veruterteeteetieteetesiterteeteettenteeteseeesteestesseenseeseseeenseeneesseenseennesseens 186
INtETfACING £0 €.t ettt sttt e st et e st e e bt e s abeebeesnbeebeeeneeens 198
POTtability GUIAE.ccueeeieuieeiieiieie ettt ettt sb et eseenbe et e e enee 203
Embedding D in HTIML......cooiiiiiiiieieeeeet ettt ettt ettt eaneas 205
Named Character ENEIEIES.......coueeruerieriieieiiesieeie ettt sttt sae et 206

3 D Specification

Lexical

In D, the lexical analysis is independent of the syntax parsing and the semantic analysis. The lexical
analyzer splits the source text up into tokens. The lexical grammar describes what those tokens are.
The D lexical grammar is designed to be suitable for high speed scanning, it has a minimum of
special case rules, there is only one phase of translation, and to make it easy to write a correct
scanner for. The tokens are readily recognizable by those familiar with C and C++.

Phases of Compilation

The process of compiling is divided into multiple phases. Each phase has no dependence on
subsequent phases. For example, the scanner is not perturbed by the semantic analyzer. This
separation of the passes makes language tools like syntax directed editors relatively easy to
produce. It also is possible to compress D source by storing it in 'tokenized' form.

1. source character set
The source file is checked to see what character set it is, and the appropriate scanner is
loaded. ASCII and UTF formats are accepted.
2. script line
If the first line starts with #! then the first line is ignored.
3. lexical analysis
The source file is divided up into a sequence of tokens. Special Tokens are replaced with
other tokens.Special token sequences Special token sequences are processed and removed.
4. syntax analysis
The sequence of tokens is parsed to form syntax trees.
5. semantic analysis
The syntax trees are traversed to declare variables, load symbol tables, assign types, and in
general determine the meaning of the program.
6. optimization
Optimization is an optional pass that tries to rewrite the program in a semantically
equivalent, but faster executing, version.
7. code generation
Instructions are selected from the target architecture to implement the semantics of the
program. The typical result will be an object file, suitable for input to a linker.

Source Text
D source text can be in one of the following formats:

- ASCII
- UTF-8
- UTF-16BE
- UTF-16LE
- UTF-32BE
- UTF-32LE

UTF-8 is a superset of traditional 7-bit ASCII. One of the following UTF BOMs (Byte Order
Marks) can be present at the beginning of the source text:

Format BOM
UTF-8 EF BB BF

D Specification 4

UTF-16BE |FE FF
UTF-16LE |FF FE
UTF-32BE |00 00 FE FF
UTF-32LE |FF FE 00 00
ASCII no BOM

If the source file does not start with a BOM, then the first character must be less than or equal to
U0000007F.

There are no digraphs or trigraphs in D.

The source text is decoded from its source representation into Unicode Characters. The Characters
are further divided into: white space, end of lines, comments, special token sequences, tokens, all
followed by end of file.

The source text is split into tokens using the maximal munch technique, i.e., the lexical analyzer
tries to make the longest token it can. For example >> is a right shift token, not two greater than
tokens.

End of File

EndOfFile:
physical end of the file
\u0000
\u001A

The source text is terminated by whichever comes first.

End of Line

EndOfLine:
\u000D
\u000A
\u000D \uO00A
EndOfFile

There is no backslash line splicing, nor are there any limits on the length of a line.

White Space

WhiteSpace:
Space
Space WhiteSpace

Space:
\u0020
\u0009
\u000B
\u000C

Comments

Comment:
/* Characters */

5 D Specification

// Characters EndOfLine
NestingBlockComment

Characters:
Character
Character Characters

NestingBlockComment:
/+ NestingBlockCommentCharacters +/

NestingBlockCommentCharacters:
NestingBlockCommentCharacter
NestingBlockCommentCharacter NestingBlockCommentCharacters

NestingBlockCommentCharacter:
Character
NestingBlockComment

D has three kinds of comments:

1. Block comments can span multiple lines, but do not nest.
2. Line comments terminate at the end of the line.
3. Nesting comments can span multiple lines and can nest.

The contents of strings and comments are not tokenized. Consequently, comment openings
occurring within a string do not begin a comment, and string delimiters within a comment do not
affect the recognition of comment closings and nested "/+" comment openings. With the exception
of "/+" occurring within a "/+" comment, comment openings within a comment are ignored.

a=/+// +/ 1; // parses as if 'a = 1;'
a=/+ "+/" +/ 1"; // parses as if 'a =" +/ 1";'
a=/+/*+/ */ 3; // parses as if 'a = */ 3;'

Comments cannot be used as token concatenators, for example, abc/** /def is two tokens, abc
and def, not one abcdef token.

Tokens

Token:
Identifier
StringLiteral
CharacterLiteral
IntegerLiteral
FloatLiteral
Keyword
/
/=

D Specification

+

++
<

<<
<<=
<>
<>=
>

>>=
>>>=
>>
>>>

<>
1<>=
<
<=
>
1>=

W) e A ety

Identifiers

Identifier:
IdentiferStart
IdentiferStart IdentifierChars

IdentifierChars:
IdentiferChar
IdentiferChar IdentifierChars

IdentifierStart:

D Specification

Letter
UniversalAlpha

IdentifierChar:
IdentiferStart
0
NonZeroDigit

Identifiers start with a letter, _, or universal alpha, and are followed by any number of letters, _,
digits, or universal alphas. Universal alphas are as defined in ISO/IEC 9899:1999(E) Appendix D.
(This is the C99 Standard.) Identifiers can be arbitrarily long, and are case sensitive. Identifiers

starting with __ (two underscores) are reserved.

String Literals

StringLiteral:
WysiwygString
AlternateWysiwygString
DoubleQuotedString
EscapeSequence
HexString

WysiwygString:
r" WysiwygCharacters " Postfiqu
AlternateWysiwygString:

WysiwygCharacters Postfiqu

WysiwygCharacters:
WysiwygCharacter
WysiwygCharacter WysiwygCharacters

WysiwygCharacter:
Character
EndOfLine

DoubleQuotedString:
" DoubleQuotedCharacters " PostfixO

DoubleQuotedCharacters:
DoubleQuotedCharacter

pt

DoubleQuotedCharacter DoubleQuotedCharacters

DoubleQuotedCharacter:
Character
EscapeSequence
EndOfLine

EscapeSequence:
\v
\n
\?
\\
\a
\b
\f
\n
\r

D Specification 8

\t

\v

\ EndOfFile

\x HexDigit HexDigit

\ OctalDigit

\ OctalDigit OctalDigit

\ OctalDigit OctalDigit OctalDigit

\u HexDigit HexDigit HexDigit HexDigit

\U HexDigit HexDigit HexDigit HexDigit
HexDigit HexDigit HexDigit HexDigit

\& NamedCharacterEntity ;

HexString:

x" HexStringChars " Postfiqu

HexStringChars:
HexStringChar
HexStringChar HexStringChars

HexStringChar
HexDigit
WhiteSpace
EndOfLine

Postfix
c
w
d

A string literal is either a double quoted string, a wysiwyg quoted string, an escape sequence, or a
hex string.

Wysiwyg quoted strings are enclosed by 1" and ". All characters between the "' and " are part of the
string except for EndOfLine which is regarded as a single \n character. There are no escape
sequences inside "' "

r"hello"

r"c:\root\foo.exe"
r"ab\n" // string is 4 characters,

laI, lbl, l\l, lnl

An alternate form of wysiwyg strings are enclosed by backquotes, the * character. The * character is
not available on some keyboards and the font rendering of it is sometimes indistinguishable from
the regular ' character. Since, however, the " is rarely used, it is useful to delineate strings with " in
them.

"hello”

‘c:\root\foo.exe"
“ab\n" // string is 4 characters, 'a', 'b', '\', 'n'

Double quoted strings are enclosed by "". Escape sequences can be embedded into them with the
typical \ notation. EndOfLine is regarded as a single \n character.

"hello"

"c:\\root\\foo.exe"

"ab\n" // string is 3 characters, 'a', 'b', and a linefeed
" ab

" // string is 3 characters, 'a', 'b', and a linefeed

Escape strings start with a \ and form an escape character sequence. Adjacent escape strings are

9 D Specification

concatenated:

\n the linefeed character

\t the tab character

\" the double quote character
\012 octal

\x1A hex

\ul234 wchar character

\U00101234 dchar character

\® ® dchar character

\r\n carriage return, line feed

Undefined escape sequences are errors. Although string literals are defined to be composed of UTF
characters, the octal and hex escape sequences allow the insertion of arbitrary binary data. \u and \U
escape sequences can only be used to insert valid UTF characters.

Hex strings allow string literals to be created using hex data. The hex data need not form valid UTF
characters.

x"O0A" // same as "\xO0A"
x"00 FBCD 32FD OA" // same as "\x00\xFB\xCD\x32\xFD\xOA"

Whitespace and newlines are ignored, so the hex data can be easily formatted. The number of hex
characters must be a multiple of 2.

Adjacent strings are concatenated with the ~ operator, or by simple juxtaposition:

"hello " ~ "world" ~ \n // forms the string 'h','e','1','1','c'," ',
// 'w','o','r','1",'d",linefeed

The following are all equivalent:

"ab" "C"

r"ab" r"c"

r""a" "bc"

"a" ~ "b" ~ "C"
\x61"bc"

The optional Postfix character gives a specific type to the string, rather than it being inferred from
the context. This is useful when the type cannot be unambiguously inferred, such as when
overloading based on string type. The types corresponding to the postfix characters are:

Postfix | Type

c charf]

w wchar|]

d dchar|]

"hello"c // char[]
"hello"w // wchar[]
"hello"d // dchar[]

Character Literals

CharacterLiteral:
' SingleQuotedCharacter '

SingleQuotedCharacter

D Specification 10

Character
EscapeSequence

Character literals are a single character or escape sequence enclosed by single quotes, ' .

Integer Literals

IntegerLiteral:
Integer
Integer IntegerSuffix

Integer:
Decimal
Binary
Octal
Hexadecimal
Integer

IntegerSuffix:
L
u
U
Lu
LU
uL
UL

Decimal:
0
NonZeroDigit
NonZeroDigit DecimalDigits

Binary:

Ob BinaryDigits

OB BinaryDigits
Octal:

0 OctalDigits
Hexadecimal:

0x HexDigits

0X HexDigits
NonZeroDigit:

CoOoJdJoUlbd WNER

DecimalDigits:
DecimalDigit
DecimalDigit DecimalDigits

DecimalDigit:
0

11 D Specification

NonZeroDigit

BinaryDigits:
BinaryDigit
BinaryDigit BinaryDigits

BinaryDigit:
0
1

OctalDigits:
OctalDigit
OctalDigit OctalDigits

OctalDigit:

SJouobd WNRO

HexDigits:
HexDigit
HexDigit HexDigits

HexDigit:
DecimalDigit

HEOQWPHRO RO DWW

Integers can be specified in decimal, binary, octal, or hexadecimal.

Decimal integers are a sequence of decimal digits.

Binary integers are a sequence of binary digits preceded by a '0b'.

Octal integers are a sequence of octal digits preceded by a '0'".

Hexadecimal integers are a sequence of hexadecimal digits preceded by a '0x' or followed by an 'h'".

Integers can have embedded ' ' characters, which are ignored. The embedded ' ' are useful for
formatting long literals, such as using them as a thousands separator:

123 456 // 123456
123456 // 123456

D Specification

12

Integers can be immediately followed by one 'L' or one 'u' or both.

The type of the integer is resolved as follows:

Decimal Literal Type
0..2147483647 int

2147483648 .. 9223372036854775807 long
Decimal Literal, L Suffix Type

OL .. 9223372036854775807L long
Decimal Literal, U Suffix Type

0U .. 4294967295U uint
4294967296U .. 18446744073709551615U ulong
Decimal Literal, UL Suffix Type
OUL .. 18446744073709551615UL ulong
Non-Decimal Literal Type

0x0 .. Ox7FFFFFFF int

0x80000000 .. OxFFFFFFFF uint

0x100000000 .. Ox7FFFFFFFFFFFFFFF long
0x8000000000000000 .. OXFFFFFFFFFFFFFFFF ulong
Non-Decimal Literal, L Suffix Type

0xOL .. Ox7FFFFFFFFFFFFFFFL long
0x8000000000000000L .. OxXFFFFFFFFFFFFFFFFL |ulong
Non-Decimal Literal, U Suffix Type

0x0U .. OxFFFFFFFFU uint
0x100000000UL .. OxFFFFFFFFFFFFFFFFUL ulong
Non-Decimal Literal, UL Suffix Type
0xOUL .. OxFFFFFFFFFFFFFFFFUL ulong

Floating Literals

FloatLiteral:
Float
Float FloatSuffix
Float ImaginarySuffix
Float FloatSuffix ImaginarySuffix

Float:
DecimalFloat
HexFloat
DecimalFloat:

DecimalDigits .

13 D Specification

DecimalDigits . DecimalDigits

DecimalDigits . DecimalDigits DecimalExponent
Decimal
Decimal DecimalExponent

DecimalDigits DecimalExponent

DecimalExponent
e DecimalDigits
E DecimalDigits
e+ DecimalDigits
E+ DecimalDigits
e- DecimalDigits
E- DecimalDigits

HexFloat:
HexPrefix HexDigits
HexPrefix HexDigits . HexDigits
HexPrefix HexDigits . HexDigits HexExponent
HexPrefix . HexDigits
HexPrefix . HexDigits HexExponent
HexPrefix HexDigits HexExponent

HexPrefix:
0x
(0) .4

HexExponent
P DecimalDigits
P DecimalDigits
p+ DecimalDigits
P+ DecimalDigits
P- DecimalDigits
P- DecimalDigits

FloatSuffix:
f
F
L

ImaginarySuffix:
i

Floats can be in decimal or hexadecimal format, as in standard C.

Hexadecimal floats are preceded with a 0x and the exponent is a p or P followed by a decimal
number serving as the exponent of 2.

Floating literals can have embedded ' ' characters, which are ignored. The embedded ' ' are useful
for formatting long literals to make them more readable, such as using them as a thousands
separator:

123 456.567_8 // 123456.5678
123456 .5678 // 123456.5678
123456 . 56 // 123456.5e-6

Floating literals with no suffix are of type double. Floats can be followed by one f, F, or L suffix.
The f or F suffix means it is a float, and L means it is a real.

If a floating literal is followed by i, then it is an ireal (imaginary) type.

Examples:

D Specification

0x1.FFFFFFFFFFFFFp1023 // double.max
Ox1p-52 // double.epsilon
1.175494351e-38F // float.min

6.31 // idouble 6.3
6.3f1 // ifloat 6.3
6.3L1 // ireal 6.3

It is an error if the literal exceeds the range of the type. It is not an error if the literal is rounded to
fit into the significant digits of the type.

Complex literals are not tokens, but are assembled from real and imaginary expressions in the
semantic analysis:

4.5 + 6.21 // complex number

Keywords

Keywords are reserved identifiers.

Keyword:
abstract
alias
align
asm
assert
auto

body
bool
break
byte

case
cast
catch
cdouble
cent
cfloat
char
class
const
continue
creal

dchar
debug
default
delegate
delete
deprecated
do

double

else
enum
export
extern

false
final

15

D Specification

finally

float

for

foreach
foreach reverse
function

goto

idouble
if

ifloat
import

in

inout

int
interface
invariant
ireal

is

lazy
long

mixin
module

new
null

out
override

package
pragma
private
protected
public

real
return

scope
short

static
struct

super

switch
synchronized

template
this
throw
true

try
typedef
typeid
typeof

ubyte
ucent

D Specification 16

uint

ulong

union

unittest

ushort

version

void

volatile

wchar

while

with
Special Tokens
These tokens are replaced with other tokens according to the following table:

Special Token Replaced with...

__FILE string literal containing source file name
__LINE__ integer literal of the current source line number
__DATE__ string literal of the date of compilation "mmm dd yyyy"
__TIME__ string literal of the time of compilation "hh:mm:ss"
_ TIMESTAMP__ ;;21,;§ literal of the date and time of compilation "www mmm dd hh:mm:ss

Special Token Sequences

Special token sequences are processed by the lexical analyzer, may appear between any other
tokens, and do not affect the syntax parsing.

There is currently only one special token sequence, #1ine.

SpecialTokenSequence
line Integer EndOfLine
line Integer Filespec EndOfLine

Filespec
" Characters "

This sets the source line number to Infeger, and optionally the source file name to Filespec,
beginning with the next line of source text. The source file and line number is used for printing
error messages and for mapping generated code back to the source for the symbolic debugging
output.

For example:

int #line 6 "fool\bar"
X; // this is now line 6 of file foo\bar

Note that the backslash character is not treated specially inside Filespec strings.

17 D Specification

Modules
Module:
ModuleDeclaration DeclDefs
DeclDefs
DeclDefs:
DeclDef

DeclDef DeclDefs

DeclDef:
AttributeSpecifier
ImportDeclaration
EnumDeclaration
ClassDeclaration
InterfaceDeclaration
AggregateDeclaration
Declaration
Constructor
Destructor
Invariant
UnitTest
StaticConstructor
StaticDestructor
DebugSpecification
VersionSpecification

I

Modules have a one-to-one correspondence with source files. The module name is the file name
with the path and extension stripped off.

Modules automatically provide a namespace scope for their contents. Modules superficially
resemble classes, but differ in that:

« There's only one instance of each module, and it is statically allocated.

+ There is no virtual table.

« Modules do not inherit, they have no super modules, etc.

+ Only one module per file.

+ Module symbols can be imported.

« Modules are always compiled at global scope, and are unaffected by surrounding attributes
or other modifiers.

Modules can be grouped together in hierarchies called packages.

Module Declaration

The ModuleDeclaration sets the name of the module and what package it belongs to. If absent, the
module name is taken to be the same name (stripped of path and extension) of the source file name.
ModuleDeclaration:

module ModuleName ;

ModuleName:
Identifier
ModuleName . Identifier

The Identifier preceding the rightmost are the packages that the module is in. The packages

D Specification 18

correspond to directory names in the source file path.

If present, the ModuleDeclaration appears syntactically first in the source file, and there can be only
one per source file.

Example:

module c.stdio; // this is module stdio in the ¢ package

By convention, package and module names are all lower case. This is because those names have a
one-to-one correspondence with the operating system's directory and file names, and many file
systems are not case sensitive. All lower case package and module names will minimize problems
moving projects between dissimilar file systems.

Import Declaration

Symbols from one module are made available in another module by using the ImportDeclaration:

ImportDeclaration:
import ImportList ;
static import ImportList ;

ImportList:
Import
ImportBindings
Import , ImportList

Import:
ModuleName
ModuleAliasIdentifier = ModuleName

ImportBindings:
Import : ImportBindList

ImportBindList:
ImportBind
ImportBind , ImportBindList

ImportBind:
Identifier
Identifier =

There are several forms of the ImportDeclaration, from generalized to fine-grained importing.

The order in which ImportDeclarations occur has no significance.

ModuleNames in the ImportDeclaration must be fully qualified with whatever packages they are in.
They are not considered to be relative to the module that imports them.

Basic Imports

The simplest form of importing is to just list the modules being imported:

import std.stdio; // import module stdio from the std package
import foo, bar; // import modules foo and bar

void main ()
{

writefln ("hello!\n"); // calls std.stdio.writefln
}

19

D Specification

How basic imports work is that first a name is searched for in the current namespace. If it is not
found, then it is looked for in the imports. If it is found uniquely among the imports, then that is

used. If it is in more than one import, an error occurs.

module A;
void foo () ;
void bar () ;

module B;
void fool();
void bar();
module C;

import A;

void fool();
void test ()

{ foo(); // C.foo() is called, it is found before imports are searched
bar(); // A.bar() is called, since imports are searched

}

module D;

import A;

import B;

void test ()

{ fool(); // error, A.foo() or B.foo() ?
A.foo(); // ok, call A.foo()
B.foo(); // ok, call B.foo()

}

’
’

module E;

import A;

import B;

alias B.foo foo;
void test ()

{ foo(); // call B.foo()
A.foo(); // call A.foo()
B.foo(); // call B.foo()

}

Public Imports

By default, imports are private. This means that if module A imports module B, and module B
imports module C, then C's names are not searched for. An import can be specifically declared
public, when it will be treated as if any imports of the module with the ImportDeclaration also

import the public imported modules.

module A;
void foo () { }

module B;
void bar() { }

module C;
import A;
public import B;

foo(); // call A.foo()
bar(); // calls B.bar()

D Specification 20

module D;

import C;

foo(); // error, foo() 1is undefined
bar(); // ok, calls B.bar()

Static Imports

Basic imports work well for programs with relatively few modules and imports. If there are a lot of
imports, name collisions can start occurring between the names in the various imported modules.
One way to stop this is by using static imports. A static import requires one to use a fully qualified
name to reference the module's names:

static import std.stdio;

void main ()

{
writefln ("hello!"); // error, writefln is undefined
std.stdio.writefln("hello!"); // ok, writefln is fully qualified

Renamed Imports

A local name for an import can be given, through which all references to the module's symbols
must be qualified with:
import io = std.stdio;

void main ()

{

io.writefln("hello!"™); // ok, calls std.stdio.writefln
std.stdio.writefln("hello!"); // error, std is undefined
writefln("hello!"); // error, writefln is undefined

Renamed imports are handy when dealing with very long import names.

Selective Imports

Specific symbols can be exclusively imported from a module and bound into the current
namespace:

import std.stdio : writefln, foo = writef;

void main ()

{

std.stdio.writefln("hello!"™); // error, std is undefined
writefln("hello!"); // ok, writefln bound into current namespace
writef ("world"); // error, writef is undefined

foo ("world") ; // ok, calls std.stdio.writef ()

fwritefln (stdout, "abc"); // error, fwritefln undefined

static cannot be used with selective imports.

21 D Specification

Renamed and Selective Imports
When renaming and selective importing are combined:

import io = std.stdio : foo = writefln;

void main ()

{

writefln ("bar"); // error, writefln is undefined
std.stdio.foo ("bar"); // error, foo is bound into current namespace
std.stdio.writefln("bar"); // error, std is undefined
foo ("bar"); // ok, foo is bound into current namespace,
// FQON not required
io.writefln ("bar"); // ok, io=std.stdio bound the name io in
// the current namespace to refer to the entire
module
io.foo ("bar"); // error, foo is bound into current namespace,
// foo is not a member of io
Module Scope Operator

Sometimes, it's necessary to override the usual lexical scoping rules to access a name hidden by a
local name. This is done with the global scope operator, which is a leading '.":

int x;

int foo (int x)

{

if (y)

return x; // returns foo.x, not global x
else

return .x; // returns global x

The leading '.' means look up the name at the module scope level.

Static Construction and Destruction

Static constructors are code that gets executed to initialize a module or a class before the main()
function gets called. Static destructors are code that gets executed after the main() function returns,
and are normally used for releasing system resources.

Order of Static Construction

The order of static initialization is implicitly determined by the import declarations in each module.
Each module is assumed to depend on any imported modules being statically constructed first.
Other than following that rule, there is no imposed order on executing the module static
constructors.

Cycles (circular dependencies) in the import declarations are allowed as long as not both of the
modules contain static constructors or static destructors. Violation of this rule will result in a
runtime exception.

Order of Static Construction within a Module

Within a module, the static construction occurs in the lexical order in which they appear.

D Specification

22

Order of Static Destruction

It is defined to be exactly the reverse order that static construction was performed in. Static
destructors for individual modules will only be run if the corresponding static constructor
successfully completed.

Order of Unit tests

Unit tests are run in the lexical order in which they appear within a module.

23

D Specification

Declarations

Declaration:
typedef Decl
alias Decl
Decl

Decl:
StorageClasses Decl
BasicType Declarators ;
BasicType Declarator FunctionBody
AutoDeclaration

Declarators:
DeclaratorInitializer
DeclaratorInitializer , DeclaratorIdentifierList

DeclaratorInitializer:
Declarator
Declarator = Initializer

DeclaratorIdentifierList:
DeclaratorIdentifier
DeclaratorIdentifier , DeclaratorIdentifierList

DeclaratorIdentifier:
Identifier

Identifier = Initializer

BasicType:
bool
byte
ubyte
short
ushort
int
uint
long
ulong
char
wchar
dchar
float
double
real
ifloat
idouble
ireal
cfloat
cdouble
creal
void
.IdentifierList
IdentifierList
Typeof
Typeof . IdentifierList

BasicTypeZl:
*

[1]

D Specification

[Expression]

[Type 1]

delegate Parameters
function Parameters

Declarator:
BasicType2 Declarator
Identifier
() Declarator
Identifier DeclaratorSuffixes
() Declarator DeclaratorSuffixes

DeclaratorSuffixes:
DeclaratorSuffix
DeclaratorSuffix DeclaratorSuffixes

DeclaratorSuffix:
[1]
[Expression]
[Type 1]
Parameters

IdentifierList:
Identifier
Identifier . IdentifierList
TemplateInstance
TemplateInstance . IdentifierList

Typeof:
typeof (Expression)

StorageClasses:
StorageClass
StorageClass StorageClasses

StorageClass:
abstract
auto
const
deprecated
extern
final
override
scope
static
synchronized

Type:
BasicType
BasicType DeclaratorZ2

Declarator2:
BasicType2 Declarator2
(Declarator2)
(Declarator2) DeclaratorSuffixes

Parameters:
(ParameterList)

()

ParameterList:

25 D Specification

Parameter
Parameter , ParameterList
Parameter

Parameter:
Declarator
Declarator = AssignExpression
InOut Declarator
InOut Declarator = AssignExpression

InQut:
in
out
inout
lazy

Initializer:
void
NonVoidInitializer

NonVoidInitializer:
AssignExpression
ArrayInitializer
StructInitializer

ArrayInitializer:

[1]

[ArrayMemberInitializations 1]

ArrayMemberInitializations:
ArrayMemberInitialization
ArrayMemberInitialization ,
ArrayMemberInitialization , ArrayMemberInitializations

ArrayMemberInitialization:
NonVoidInitializer
AssignExpression : NonVoidInitializer

StructInitializer:

{1

{ StructMemberInitializers }

StructMemberInitializers:
StructMemberInitializer
StructMemberInitializer ,
StructMemberInitializer , StructMemberInitializers

StructMemberInitializer:
NonVoidInitializer
Identifier : NonVoidInitializer

AutoDeclaration:
StorageClasses Identifier = AssignExpression ;

Declaration Syntax

Declaration syntax generally reads right to left:

int x; // x 1s an int
int* x; // x is a pointer to int

D Specification 26

int** x; // x 1s a pointer to a pointer to int
int[] x; // x is an array of ints

int*[] x; // x is an array of pointers to ints

int[]* x; // x 1s a pointer to an array of ints

Arrays read right to left as well:

int[3] x; // x is an array of 3 ints
int[3]1[5] x; // x is an array of 5 arrays of 3 ints
int[3]*[5] x; // x 1is an array of 5 pointers to arrays of 3 ints

Pointers to functions are declared using the function keyword:

int function (char) x; // x 1s a pointer to a function taking a char argument
// and returning an int
int function(char)[] x; // x is an array of pointers to functions

// taking a char argument and returning an int

C-style array declarations may be used as an alternative:

int x[3]; // %X is an array of 3 ints

int x[3]1[51; // x 1is an array of 3 arrays of 5 ints

int (*x[5])[31; // % is an array of 5 pointers to arrays of 3 ints

int (*x) (char); // x is a pointer to a function taking a char argument

// and returning an int
int (*[] x) (char); // x is an array of pointers to functions
// taking a char argument and returning an int

In a declaration declaring multiple symbols, all the declarations must be of the same type:

int x,y; // x and y are ints

int* x,y; // x and y are pointers to ints
int x, *y; // error, multiple types

int[] x,vy; // % and y are arrays of ints
int x[],y; // error, multiple types

Implicit Type Inference

If a declaration starts with a StorageClass and has a NonVoidlnitializer from which the type can be
inferred, the type on the declaration can be omitted.

static x = 3; // x is type int

auto y = 4u; // y 1s type uint

auto s = "string"; // s is type char[6]

class C { ... }

auto ¢ = new C(); // ¢ is a handle to an instance of class C

The NonVoidlnitializer cannot contain forward references (this restriction may be removed in the
future). The implicitly inferred type is statically bound to the declaration at compile time, not run
time.

Type Defining

Strong types can be introduced with the typedef. Strong types are semantically a distinct type to the
type checking system, for function overloading, and for the debugger.

typedef int myint;

27 D Specification

void foo(int x) { . }

void foo(myint m) { . }

myint b;

foo(b); // calls foo (myint)

Typedefs can specify a default initializer different from the default initializer of the underlying type:

typedef int myint = 7;
myint m; // initialized to 7

Type Aliasing
It's sometimes convenient to use an alias for a type, such as a shorthand for typing out a long,
complex type like a pointer to a function. In D, this is done with the alias declaration:

alias abc.Foo.bar myint;

Aliased types are semantically identical to the types they are aliased to. The debugger cannot
distinguish between them, and there is no difference as far as function overloading is concerned.
For example:

alias int myint;
void foo(int x) { . }

void foo(myint m) { . } // error, multiply defined function foo

Type aliases are equivalent to the C typedef.

Alias Declarations

A symbol can be declared as an alias of another symbol. For example:

import string;
alias string.strlen mylen;

int len = mylen("hello"); // actually calls string.strlen()

The following alias declarations are valid:

template Foo2(T) { alias T t; }
alias Foo2! (int) tl1;

alias Foo2! (int) .t t2;

alias tl.t t3;

alias t2 t4;

tl.t vl; // vl is type int
t2 v2; // v2 is type int
t3 v3; // v3 is type int
td v4; // v4 is type int

Aliased symbols are useful as a shorthand for a long qualified symbol name, or as a way to redirect
references from one symbol to another:

version (Win32)

{

D Specification 28

alias win32.foo myfoo;

}

version (linux)

{

alias linux.bar myfoo;

}

Aliasing can be used to 'import' a symbol from an import into the current scope:

alias string.strlen strlen;

Aliases can also 'import' a set of overloaded functions, that can be overloaded with functions in the
current scope:

class A {
int foo(int a) { return 1; }

}

class B : A {
int foo(int a, uint b) { return 2; }

}

class C : B {
int foo(int a) { return 3; }
alias B.foo foo;

class D : C {

void test ()

{
D b = new D();

int i;
i = b.foo(l, 2u); // calls B.foo
i = b.foo(l); // calls C.foo

Note: Type aliases can sometimes look indistinguishable from alias declarations:

alias foo.bar abc; // 1s it a type or a symbol?

The distinction is made in the semantic analysis pass.

Aliases cannot be used for expressions:

struct S { static int 1i; }

S s;
alias s.i a; // i1illegal, s.i is an expression
alias S.i b; // ok

b = 4; // sets S.i to 4

29 D Specification

Extern Declarations

Variable declarations with the storage class extern are not allocated storage within the module.
They must be defined in some other object file with a matching name which is then linked in. The
primary usefulness of this is to connect with global variable declarations in C files.

typeof

Typeofis a way to specify a type based on the type of an expression. For example:

void func(int 1)

{

typeof (1) 7J; // J is of type int

typeof (3 + 6.0) x; // x is of type double
typeof (1) * p; // p is of type pointer to int
int[typeof (p)] a; // a is of type int[int¥*]

printf ("%d\n", typeof('c').sizeof); // prints 1
double c = cast (typeof(1.0))7; // cast j to double

Expression is not evaluated, just the type of it is generated:

void func(

)
{ int 1 = 1;
typeof (++1i) J; // j is declared to be an int, i is not incremented
printf ("$d\n", 1); // prints 1

There are two special cases: typeof(this) will generate the type of what this would be in a non-
static member function, even if not in a member function. Analogously, typeof(super) will generate
the type of what super would be in a non-static member function.

class A { }

class B : A
{

typeof (this) x; // % 1s declared to be a B
typeof (super) y; // y 1s declared to be an A
}
struct C
{
typeof (this) z; // z is declared to be a C¥*
typeof (super) g; // error, no super struct for C
}
typeof (this) r; // error, no enclosing struct or class

Where Typeofis most useful is in writing generic template code.

Void Initializations

Normally, variables are initialized either with an explicit Initializer or are set to the default value for
the type of the variable. If the Initializer is void, however, the variable is not initialized. If its value
is used before it is set, undefined program behavior will result.

void foo ()

{

D Specification

30

int x = void;
writefln (x); // will print garbage

Therefore, one should only use void initializers as a last resort when optimizing critical code.

31

D Specification

Types

Basic Data Types

Keyword Description Defaugillllilti)t falizer
void no type -

bool boolean value false

byte signed 8 bits 0

ubyte unsigned 8 bits 0

short signed 16 bits 0

ushort |unsigned 16 bits 0

int signed 32 bits 0

uint unsigned 32 bits 0

long signed 64 bits OL

ulong unsigned 64 bits oL

cent signed 128 bits (reserved for future use) 0

ucent unsigned 128 bits (reserved for future use) 0

float 32 bit floating point float.nan

double |64 bit floating point double.nan

real largest hardware implementec.l floating point size real.nan

(Implementation Note: 80 bits for Intel CPUs)
ifloat |imaginary float float.nan * 1.01
idouble |imaginary double double.nan * 1.01
ireal imaginary real real.nan * 1.01
cfloat [acomplex number of two float values fll.(())eilt.nan * float.nan *
cdouble |complex double 32332:222 1_ 1.0i
creal complex real ﬁegl'.nan * real.nan *
.01

char unsigned 8 bit UTF-8 OxFF

wchar unsigned 16 bit UTF-16 OxFFFF

dchar unsigned 32 bit UTF-32 0x0000FFFF

D Specification 32

Derived Data Types

pointer

array

associative array
function
delegate

User Defined Types

alias
typedef
enum
struct
union
class

Base Types

The base type of an enum is the type it is based on:
enum E : T { ... } // T is the base type of E

The base type of a typedef is the type it is formed from:
typedef T U; // T is the base type of U

Pointer Conversions

Casting pointers to non-pointers and vice versa is allowed in D, however, do not do this for any
pointers that point to data allocated by the garbage collector.

Implicit Conversions
Implicit conversions are used to automatically convert types as required.

A typedef or enum can be implicitly converted to its base type, but going the other way requires an
explicit conversion. For example:

typedef int myint;

int i;

myint m;

i=m; // OK
m= i; // error
m = cast (myint)i; // OK

Integer Promotions

Integer Promotions are conversions of the following types:

from | to

33 D Specification

bool |int
byte |int
ubyte |int
short |int
ushort |int
char |int
wchar |int
dchar |uint

If a typedef or enum has as a base type one of the types in the left column, it is converted to the type
in the right column.

Usual Arithmetic Conversions

The usual arithmetic conversions convert operands of binary operators to a common type. The
operands must already be of arithmetic types. The following rules are applied in order, looking at
the base type:

1. If either operand is real, the other operand is converted to real.
2. Else if either operand is double, the other operand is converted to double.
3. Else if either operand is float, the other operand is converted to float.
4. Else the integer promotions are done on each operand, followed by:
1. If both are the same type, no more conversions are done.
If both are signed or both are unsigned, the smaller type is converted to the larger.
6. If the signed type is larger than the unsigned type, the unsigned type is converted to the
signed type.
7. The signed type is converted to the unsigned type.

9]

If one or both of the operand types is a typedef or enum after undergoing the above conversions, the
result type is:

1. If the operands are the same type, the result will be the that type.

2. If one operand is a typedef or enum and the other is the base type of that typedef or enum,
the result is the base type.

3. If the two operands are different typedefs or enums but of the same base type, then the result
is that base type.

Integer values cannot be implicitly converted to another type that cannot represent the integer bit
pattern after integral promotion. For example:

ubyte ul = cast(byte)-1; // error, -1 cannot be represented in a ubyte
ushort u2 = cast(short)-1; // error, -1 cannot be represented in a ushort
uint u3 = cast(int)-1; // ok, -1 can be represented in a uint

ulong wué4 = cast(ulong)-1; // ok, -1 can be represented in a ulong

Floating point types cannot be implicitly converted to integral types.
Complex floating point types cannot be implicitly converted to non-complex floating point types.

Imaginary floating point types cannot be implicitly converted to float, double, or real types. Float,
double, or real types cannot be implicitly converted to imaginary floating point types.

D Specification 34

bool

The bool type is a 1 byte size type that can only hold the value true or false. The only operators that
can accept operands of type bool are: & | * &= |="=! && || ?:. A bool value can be implicitly
converted to any integral type, with false becoming 0 and true becoming 1. The numeric literals 0
and 1 can be implicitly converted to the bool values false and true, respectively. Casting an
expression to bool means testing for 0 or !=0 for arithmetic types, and null or !=null for pointers or
references.

Delegates

There are no pointers-to-members in D, but a more useful concept called delegates are supported.
Delegates are an aggregate of two pieces of data: an object reference and a function pointer. The
object reference forms the this pointer when the function is called.

Delegates are declared similarly to function pointers, except that the keyword delegate takes the
place of (*), and the identifier occurs afterwards:

int function(int) fp; // fp is pointer to a function
int delegate (int) dg; // dg is a delegate to a function

The C style syntax for declaring pointers to functions is also supported:

int (*fp) (int); // fp is pointer to a function

A delegate is initialized analogously to function pointers:

int func(int);

fp = &func; // fp points to func

class OB

{ int member (int) ;

}

OB o;

dg = &o.member; // dg is a delegate to object o and

// member function member

Delegates cannot be initialized with static member functions or non-member functions.

Delegates are called analogously to function pointers:

fp(3); // call func(3)
dg(3); // call o.member (3)

35

D Specification

Properties
Every type and expression has properties that can be queried:
Expression Value
int.sizeof yields 4

yields the floating point nan (Not A Number)

float.nan value

(float).nan |yields the floating point nan value

(3).sizeof |yields 4 (because 3 is an int)

2.sizeof syntax error, since "2." is a floating point number
int.init default initializer for int's

int.mangleof | yields the string "i"

Properties for All Types

Property

Description

nit initializer

.sizeof size in bytes (equivalent to C's sizeof(type))

.alignof |alignment size

.mangleof

string representing the 'mangled' representation of the
type

Properties for Integral Types

Property | Description

.nit initializer (0)

max maximum

value
.min minimum value
Properties for Floating Point Types
Property Description

.nit initializer (NaN)

.infinity infinity value

.nan NaN value

dig number of decimal digits of precision

.epsilon

smallest increment to the value 1

D Specification

36

.mant_dig

number of bits in mantissa

.max_10 exp

maximum int value such that 10m3_10_XP jg representable

.max_exp

maximum int value such that 2M-XP-1 js representable

.min_10_exp

minimum int value such that 10™"-10_¢XP jg representable as a normalized
value

.min_exp minimum int value such that 2Min_exp-1 i representable as a normalized value
.max largest representable value that's not infinity

.min smallest representable normalized value that's not 0

.re real part

.Am imaginary part

.init Property

.init produces a constant expression that is the default initializer. If applied to a type, it is the default
initializer for that type. If applied to a variable or field, it is the default initializer for that variable or
field. For example:

int a;
int b = 1;

typedef int t = 2;

t c;

t d = cast(t)3;

int.init
.init
.init
.init
.init
.init

O Q oW

struct Foo
{
int a;
int b =
}

Foo.a.init
Foo.b.init

// is 0
// is 0
// is 1
// is 2
// is 2
// is 3
7;
// is 0
// is 7

Class and Struct Properties

Properties are member functions that can be syntactically treated as if they were fields. Properties

can be read from or written to. A property is read by calling a method with no arguments; a
property is written by calling a method with its argument being the value it is set to.

A simple property would be:

struct Foo

{

int data() { return m data; } // read property

37 D Specification

int data(int value) { return m data = value; } // write property

private:
int m data;

To use it:
int test ()
{
Foo f£f;
f.data = 3; // same as f.data(3):;
return f.data + 3; // same as return f.data() + 3;

The absence of a read method means that the property is write-only. The absence of a write method
means that the property is read-only. Multiple write methods can exist; the correct one is selected
using the usual function overloading rules.

In all the other respects, these methods are like any other methods. They can be static, have
different linkages, be overloaded with methods with multiple parameters, have their address taken,
etc.

Note: Properties currently cannot be the Ivalue of an op=, ++, or -- operator.

D Specification

Attributes

AttributeSpecifier:
Attribute
Attribute DeclarationBlock

Attribute:
LinkageAttribute
AlignAttribute
Pragma

deprecated
private

package
protected
public
export
static
final
override
abstract
const
auto

scope

DeclarationBlock
DeclDef

{1}
{ DeclDefs }

Attributes are a way to modify one or more declarations. The general forms are:

attribute declaration; affects the declaration

attribute: affects all declarations until the next }
declaration;
declaration;

attribute affects all declarations in the block
{

declaration;

declaration;

For attributes with an optional else clause:

attribute
declaration;

else
declaration;

attribute affects all declarations in the block

{
declaration;
declaration;

else

39 D Specification

declaration;
declaration;

Linkage Attribute

LinkageAttribute:
extern
extern (LinkageType)

LinkageType:
C
C++
D
Windows
Pascal

D provides an easy way to call C functions and operating system API functions, as compatibility
with both is essential. The LinkageType is case sensitive, and is meant to be extensible by the
implementation (they are not keywords). C and D must be supplied, the others are what makes
sense for the implementation. C++ is reserved for future use. Implementation Note: for Win32
platforms, Windows and Pascal should exist.

C function calling conventions are specified by:

extern (C):
int foo(); // call foo() with C conventions

D conventions are:

extern (D) :

or:

extern:

Windows API conventions are:

extern (Windows) :
void *VirtualAlloc (
void *1pAddress,
uint dwSize,
uint flAllocationType,
uint flProtect

)7

Align Attribute

AlignAttribute:
align
align (Integer)

Specifies the alignment of struct members. align by itself sets it to the default, which matches the
default member alignment of the companion C compiler. /nteger specifies the alignment which
matches the behavior of the companion C compiler when non-default alignments are used.

D Specification 40

Matching the behavior of the companion C compiler can have some surprising results, such as the
following for Digital Mars C++:

struct S
{ align(4) byte a; // placed at offset O
align(4) byte b; // placed at offset 1

}

AlignAttribute is meant for C ABI compatiblity, which is not the same thing as binary compatibility
across diverse platforms. For that, use packed structs:

align (1) struct S

{ byte a; // placed at offset O
byte[3] fillerl;
byte b; // placed at offset 4

byte[3] filler2;

A value of 1 means that no alignment is done; members are packed together.

Do not align references or pointers that were allocated using NewExpression on boundaries that are
not a multiple of size t. The garbage collector assumes that pointers and references to gc
allocated objects will be on size t byte boundaries. If they are not, undefined behavior will
result.

AlignAttribute is ignored when applied to declarations that are not structs or struct members.

Deprecated Attribute

It is often necessary to deprecate a feature in a library, yet retain it for backwards compatibility.
Such declarations can be marked as deprecated, which means that the compiler can be set to
produce an error if any code refers to deprecated declarations:

deprecated

{
void oldFoo();

}

Implementation Note: The compiler should have a switch specifying if deprecated declarations
should be compiled with out complaint or not.

Protection Attribute

Protection is an attribute that is one of private, package, protected, public or export.

Private means that only members of the enclosing class can access the member, or members and
functions in the same module as the enclosing class. Private members cannot be overridden. Private
module members are equivalent to static declarations in C programs.

Package extends private so that package members can be accessed from code in other modules that
are in the same package. This applies to the innermost package only, if a module is in nested
packages.

Protected means that only members of the enclosing class or any classes derived from that class, or
members and functions in the same module as the enclosing class, can access the member. If
accessing a protected instance member through a derived class member function, that member can
only be accessed for the object instance which is th