

D Programming Language

The D Programming Language

 2

"It seems to me that most of the "new" programming languages fall into one of two categories: Those from
academia with radical new paradigms and those from large corporations with a focus on RAD and the web.
Maybe its time for a new language born out of practical experience implementing compilers." -- Michael

"Great, just what I need.. another D in programming." -- Segfault

This is the reference document for the D programming language. D was conceived in
December 1999 by myself as a successor to C and C++, and has grown and evolved with
helpful suggestions and critiques by my friends and colleagues. I've been told the usual, that
there's no chance for a new programming language, that who do I think I am designing a
language, etc. Take a look at the document and decide for yourself!

The D newsgroup in news.digitalmars.com server is where discussions of this should go.
Suggestions, criticism, kudos, flames, etc., are all welcome there.

Note: all D users agree that by downloading and using D, or reading the D specs, they will
explicitly identify any claims to intellectual property rights with a copyright or patent notice
in any posted or emailed feedback sent to Digital Mars.

-Walter

The D Programming Language

 3

Overview .. 11

What is D?.. 11
Why D? .. 11

Features To Keep From C/C++.. 12
Features To Drop.. 13
Who D is For .. 14
Who D is Not For ... 14

Major Features of D ... 15
Object Oriented Programming ... 15
Productivity .. 15
Functions .. 17
Arrays ... 17
Resource Management ... 18
Performance ... 18
Reliability ... 19
Compatibility.. 20
Project Management... 21

Sample D Program (sieve.d) .. 21
Lexical .. 23

Phases of Compilation.. 23
Source Text .. 23
End of File .. 24
End of Line... 24
White Space.. 24
Comments... 24
Identifiers ... 25
String Literals ... 25
Integer Literals ... 27
Floating Literals ... 28
Keywords ... 29
Tokens .. 30
Pragmas .. 31

Modules .. 33
Module Declaration.. 33
Import Declaration ... 34
Scope and Modules .. 34

Static Construction and Destruction... 35
Order of Static Construction .. 35
Order of Static Construction within a Module ... 35
Order of Static Destruction .. 35

Declarations.. 36
Declaration Syntax ... 36
Type Defining .. 37
Type Aliasing ... 37
Alias Declarations .. 37

Types .. 39
Basic Data Types.. 39
Derived Data Types.. 39

The D Programming Language

 4

User Defined Types.. 40
Pointer Conversions ... 40
Implicit Conversions .. 40

Integer Promotions ... 40
Usual Arithmetic Conversions ... 40

Delegates .. 41
Properties.. 42

Properties for Integral Data Types ... 42
Properties for Floating Point Types ... 42
.init Property... 42

Attributes .. 44
Linkage Attribute ... 45
Align Attribute ... 45
Deprecated Attribute .. 46
Protection Attribute .. 46
Const Attribute ... 46
Override Attribute .. 46
Static Attribute ... 47
Auto Attribute .. 47

Expressions... 49
Evaluation Order .. 51
Expressions... 51
Assign Expressions .. 51

Assignment Operator Expressions ... 51
Conditional Expressions... 52
OrOr Expressions ... 52
AndAnd Expressions.. 52
Bitwise Expressions ... 53

Or Expressions ... 53
Xor Expressions ... 53
And Expressions... 53

Equality Expressions .. 53
Identity Expressions ... 53
Relational Expressions ... 54

Integer comparisons ... 55
Floating point comparisons .. 55
In Expressions .. 56

Shift Expressions.. 56
Add Expressions... 57
Mul Expressions... 57
Unary Expressions.. 57

New Expressions .. 58
Cast Expressions .. 58

Postfix Expressions .. 59
Primary Expressions... 59

this .. 59
super ... 59
null.. 59
true, false .. 59
Function Literals .. 59
Assert Expressions ... 60

The D Programming Language

 5

Statements .. 61
Labelled Statements ... 62
Block Statement ... 62
Expression Statement ... 63
Declaration Statement .. 63
If Statement .. 63
While Statement ... 63
Do-While Statement ... 64
For Statement ... 64
Switch Statement.. 65
Continue Statement .. 66
Break Statement ... 67
Return Statement .. 67
Goto Statement ... 67
With Statement ... 68
Synchronize Statement ... 68
Try Statement ... 69
Throw Statement .. 69
Volatile Statement .. 69
Asm Statement ... 70

Arrays ... 72
Pointers... 72
Static Arrays ... 72
Dynamic Arrays ... 72

Array Declarations ... 72
Usage.. 73
Slicing... 73
Array Copying.. 74
Array Setting .. 74
Array Concatenation .. 74
Array Operations .. 75
Rectangular Arrays... 76
Array Properties ... 76

Setting Dynamic Array Length .. 77
Array Bounds Checking ... 78
Array Initialization ... 78

Static Initialization of Static Arrays ... 78
Special Array Types ... 79

Arrays of Bits ... 79
Strings... 79

Associative Arrays ... 80
Properties.. 81
Associative Array Example: word count ... 81

Structs, Unions, Enums .. 83
Structs, Unions ... 83

Static Initialization of Structs ... 83
Static Initialization of Unions .. 83

Enums... 84
Enum Properties ... 85
Initialization of Enums ... 85

Classes .. 86

The D Programming Language

 6

Fields .. 87
Super Class ... 87
Constructors ... 88
Destructors ... 89
Static Constructors ... 90
Static Destructor ... 91
Class Invariants .. 91
Unit Tests ... 92
Class Allocators.. 92
Class Deallocators .. 93
Auto Classes ... 93

Interfaces .. 93
Functions .. 97

Virtual Functions.. 97
Inline Functions.. 97
Function Overloading... 97
Function Parameters ... 97
Local Variables .. 98

Nested Functions .. 98
Delegates, Function Pointers, and Dynamic Closures ... 101

Operator Overloading... 103
Unary Operator Overloading.. 103

Overloadable Unary Operators... 103
Overloading ++e and --e .. 103
Examples .. 103

Binary Operator Overloading... 103
Overloadable Binary Operators.. 103
Overloading == and != ... 105
Overloading <, <=, > and >=.. 105

Future Directions.. 106
Templates ... 107

Instantiation Scope ... 108
Argument Deduction .. 109
Value Parameters.. 110
Specialization ... 110
Limitations ... 110

Contracts... 111
Assert Contract ... 111
Pre and Post Contracts.. 111
In, Out and Inheritance... 113
Class Invariants .. 113

Debug and Version... 114
Predefined Versions ... 114
Specification... 115
Debug Statement .. 115
Version Statement .. 116
Debug Attribute.. 116
Version Attribute.. 117

Error Handling in D.. 119
The Error Handling Problem.. 119
The D Error Handling Solution.. 120

The D Programming Language

 7

Garbage Collection... 122
How Garbage Collection Works .. 123
Interfacing Garbage Collected Objects With Foreign Code .. 123
Pointers and the Garbage Collector.. 123
Working with the Garbage Collector ... 124

Memory Management .. 125
Strings (and Array) Copy-on-Write ... 125
Real Time ... 126
Smooth Operation .. 126
Free Lists .. 126
Reference Counting.. 127
Explicit Class Instance Allocation ... 127
Mark/Release.. 129
RAII (Resource Acquisition Is Initialization) .. 130
Allocating Class Instances On The Stack .. 130

Floating Point ... 131
Floating Point Intermediate Values.. 131
Complex and Imaginary types.. 131
Rounding Control ... 132
Exception Flags .. 132
Floating Point Comparisons ... 132

D x86 Inline Assembler.. 133
Labels ... 133
align IntegerExpression.. 133
even .. 134
naked .. 134
db, ds, di, dl, df, dd, de ... 134
Opcodes .. 134

Special Cases.. 135
Operands... 135

Operand Types ... 136
Struct/Union/Class Member Offsets .. 137
Special Symbols ... 137

Opcodes Supported .. 137
AMD Opcodes Supported .. 141

Interfacing to C... 142
Calling C Functions.. 142
Storage Allocation.. 143
Data Type Compatibility.. 143
Calling printf().. 144
Structs and Unions ... 144

Interfacing to C++ .. 145
Portability Guide .. 146

OS Specific Code ... 146
Embedding D in HTML ... 147
D Runtime Model... 148

Object Model.. 148
Array Model ... 148

Phobos .. 150
D Runtime Library ... 150

Philosophy.. 150

The D Programming Language

 8

Imports ... 150
Core D: Available on all D implementations ... 151
Standard C: interface to C functions .. 151
Operating System and Hardware: platform specific .. 151

compiler.. 152
conv .. 152
ctype ... 152
date ... 153
file... 154
gc .. 154
intrinsic... 155
math.. 157
object .. 160
outbuffer ... 160
path ... 161
process .. 162
random.. 162
regexp ... 163
stdint ... 164
stream ... 165

Reading... 165
Writing ... 166
Seeking ... 167

string... 169
To copy or not to copy?.. 169

system... 171
thread .. 171
zip ... 172
stdio .. 172

D for Win32 ... 173
Calling Conventions... 173
Windows Executables .. 173
DLLs (Dynamic Link Libraries) .. 174

Memory Allocation .. 175
COM Programming.. 176

D vs Other Languages .. 177
Notes... 179

Programming in D for C Programmers .. 180
Getting the Size of a Type.. 181
Get the max and min values of a type .. 181
Primitive Types .. 181
Special Floating Point Values .. 182
Taking the Modulus of a floating point number .. 182
Dealing with NAN's in floating point compares .. 183
Assert's are a necessary part of any good defensive coding strategy. 183
Initializing all elements of an array.. 184
Looping through an array... 184
Creating an array of variable size... 184
String Concatenation .. 185
Formatted printing.. 186
Forward referencing functions ... 186

The D Programming Language

 9

Functions that have no arguments .. 186
Labelled break's and continue's. ... 187
Goto Statements ... 187
Struct tag name space ... 188
Looking up strings.. 188
Setting struct member alignment.. 189
Anonymous Structs and Unions... 189
Declaring struct types and variables... 190
Getting the offset of a struct member... 190
Union initializations. .. 191
Struct initializations.. 191
Array initializations.. 191
Escaped String Literals... 192
Ascii vs Wide Characters ... 192
Arrays that parallel an enum .. 193
Creating a new typedef'd type .. 193
Comparing structs .. 194
Comparing strings .. 195
Sorting arrays ... 196
Volatile memory access ... 196
String literals .. 196
Data Structure Traversal... 197

Programming in D for C++ Programmers.. 199
Defining constructors ... 199
Base class initialization .. 200
Comparing structs .. 200
Creating a new typedef'd type .. 201
Friends .. 202
Operator overloading.. 203
Namespace using declarations.. 204
RAII (Resource Acquisition Is Initialization) .. 204
Dynamic Closures .. 205

The C Preprocessor Versus D .. 207
Header Files.. 207
#pragma once ... 207
#pragma pack ... 208
Macros .. 208
Conditional Compilation .. 212
Code Factoring ... 213

The D Style... 215
White Space.. 215
Comments... 215
Naming Conventions.. 215
Meaningless Type Aliases.. 216
Declaration Style .. 216
Operator Overloading... 216
Hungarian Notation .. 216

Example: wc... 217
Compiler for D Programming Language ... 219

Files .. 219
Requirements.. 219

The D Programming Language

 10

Installation .. 219
Example.. 219
Compiler Arguments and Switches.. 219
Linking ... 220
Environment Variables... 221
SC.INI Initialization File.. 221
Bugs.. 221
Feedback... 221

Acknowledgements .. 222

The D Programming Language

 11

Overview
What is D?
D is a general purpose systems and applications programming
language. It is a higher level language than C++, but retains the
ability to write high performance code and interface directly with the
operating system API's and with hardware. D is well suited to
writing medium to large scale million line programs with teams of
developers. D is easy to learn, provides many capabilities to aid the
programmer, and is well suited to aggressive compiler optimization
technology.

D is not a scripting language, nor an interpreted language. It doesn't
come with a VM, a religion, or an overriding philosophy. It's a
practical language for practical programmers who need to get the job
done quickly, reliably, and leave behind maintainable, easy to
understand code.

D is the culmination of decades of experience implementing compilers for many diverse
languages, and attempting to construct large projects using those languages. D draws
inspiration from those other languages (most especially C++) and tempers it with experience
and real world practicality.

Why D?
Why, indeed. Who needs another programming language?

The software industry has come a long way since the C language was invented. Many new
concepts were added to the language with C++, but backwards compatibility with C was
maintained, including compatibility with nearly all the weaknesses of the original design.
There have been many attempts to fix those weaknesses, but the compatibility issue frustrates
it. Meanwhile, both C and C++ undergo a constant accretion of new features. These new
features must be carefully fitted into the existing structure without requiring rewriting old
code. The end result is very complicated - the C standard is nearly 500 pages, and the C++
standard is about 750 pages! The reality of the C++ compiler business is that few compilers
effectively implement the entire standard.

C++ programmers tend to program in particular islands of the language, i.e. getting very
proficient using certain features while avoiding other feature sets. While the code is portable
from compiler to compiler, it can be hard to port it from programmer to programmer. A great
strength of C++ is that it can support many radically different styles of programming - but in
long term use, the overlapping and contradictory styles are a hindrance.

It's frustrating that such a powerful language does not do basic things like resizing arrays and
concatenating strings. Yes, C++ does provide the meta programming ability to implement
resizable arrays and strings like the vector type in the STL. Such fundamental features,
however, ought to be part of the language. Can the power and capability of C++ be extracted,
redesigned, and recast into a language that is simple, orthogonal, and practical? Can it all be
put into a package that is easy for compiler writers to correctly implement, and which enables
compilers to efficiently generate aggressively optimized code?

The D Programming Language

 12

Modern compiler technology has progressed to the point where language features for the
purpose of compensating for primitive compiler technology can be omitted. (An example of
this would be the 'register' keyword in C, a more subtle example is the macro preprocessor in
C.) We can rely on modern compiler optimization technology to not need language features
necessary to get acceptable code quality out of primitive compilers.

D aims to reduce software development costs by at least 10% by adding in proven
productivity enhancing features and by adjusting language features so that common, time-
consuming bugs are eliminated from the start.

Features To Keep From C/C++
The general look of D is like C and C++. This makes it easier to learn and port code to D.
Transitioning from C/C++ to D should feel natural, the programmer will not have to learn an
entirely new way of doing things.

Using D will not mean that the programmer will become restricted to a specialized runtime
vm (virtual machine) like the Java vm or the Smalltalk vm. There is no D vm, it's a
straightforward compiler that generates linkable object files. D connects to the operating
system just like C does. The usual familiar tools like make will fit right in with D
development.

• The general look and feel of C/C++ will be maintained. It will use the same algebraic
syntax, most of the same expression and statement forms, and the general layout.

• D programs can be written either in C style function-and-data or in C++ style object-
oriented, or any mix of the two.

• The compile/link/debug development model will be carried forward, although
nothing precludes D from being compiled into bytecode and interpreted.

• Exception handling. More and more experience with exception handling shows it to
be a superior way to handle errors than the C traditional method of using error codes
and errno globals.

• Runtime Type Identification. This is partially implemented in C++; in D it is taken
to its next logical step. Fully supporting it enables better garbage collection, better
debugger support, more automated persistence, etc.

• D maintains function link compatibility with the C calling conventions. This makes it
possible for D programs to access operating system API's directly. Programmers'
knowledge and experience with existing programming API's and paradigms can be
carried forward to D with minimal effort.

• Operator overloading. D programs can overload operators enabling extension of the
basic types with user defined types.

• Templates. Templates are a way to implement generic programming. Other ways
include using macros or having a variant data type. Using macros is out. Variants are
straightforward, but inefficient and lack type checking. The difficulties with C++
templates are their complexity, they don't fit well into the syntax of the language, all
the various rules for conversions and overloading fitted on top of it, etc. D offers a
much simpler way of doing templates.

• RAII (Resource Acquisition Is Initialization). RAII techniques are an essential
component of writing reliable software.

• Down and dirty programming. D will retain the ability to do down-and-dirty
programming without resorting to referring to external modules compiled in a
different language. Sometimes, it's just necessary to coerce a pointer or dip into

The D Programming Language

 13

assembly when doing systems work. D's goal is not to prevent down and dirty
programming, but to minimize the need for it in solving routine coding tasks.

Features To Drop

• C source code compatibility. Extensions to C that maintain source compatiblity have
already been done (C++ and ObjectiveC). Further work in this area is hampered by so
much legacy code it is unlikely that significant improvements can be made.

• Link compatibility with C++. The C++ runtime object model is just too complicated -
properly supporting it would essentially imply making D a full C++ compiler too.

• The C preprocessor. Macro processing is an easy way to extend a language, adding in
faux features that aren't really there (invisible to the symbolic debugger). Conditional
compilation, layered with #include text, macros, token concatenation, etc., essentially
forms not one language but two merged together with no obvious distinction between
them. Even worse (or perhaps for the best) the C preprocessor is a very primitive
macro language. It's time to step back, look at what the preprocessor is used for, and
design support for those capabilities directly into the language.

• Multiple inheritance. It's a complex feature of debatable value. It's very difficult to
implement in an efficient manner, and compilers are prone to many bugs in
implementing it. Nearly all the value of MI can be handled with single inheritance
coupled with interfaces and aggregation. What's left does not justify the weight of MI
implementation.

• Namespaces. An attempt to deal with the problems resulting from linking together
independently developed pieces of code that have conflicting names. The idea of
modules is simpler and works much better.

• Tag name space. This misfeature of C is where the tag names of struct's are in a
separate but parallel symbol table. C++ attempted to merge the tag name space with
the regular name space, while retaining backward compatibility with legacy C code.
The result is not printable.

• Forward declarations. C compilers semantically only know about what has lexically
preceded the current state. C++ extends this a little, in that class members can rely on
forward referenced class members. D takes this to its logical conclusion, forward
declarations are no longer necessary at all. Functions can be defined in a natural order
rather than the typical inside-out order commonly used in C programs to avoid writing
forward declarations.

• Include files. A major cause of slow compiles as each compilation unit must reparse
enormous quantities of header files. Include files should be done as importing a
symbol table.

• Creating object instances on the stack. In D, all class objects are by reference. This
eliminates the need for copy constructors, assignment operators, complex destructor
semantics, and interactions with exception handling stack unwinding. Memory
resources get freed by the garbage collector, other resources are freed by using the
RAII features of D.

• Trigraphs and digraphs. Unicode is the future.
• Preprocessor. Modern languages should not be text processing, they should be

symbolic processing.
• Non-virtual member functions. In C++, a class designer decides in advance if a

function is to be virtual or not. Forgetting to retrofit the base class member function to
be virtual when the function gets overridden is a common (and very hard to find)
coding error. Making all member functions virtual, and letting the compiler decide if

The D Programming Language

 14

there are no overrides and hence can be converted to non-virtual, is much more
reliable.

• Bit fields of arbitrary size. Bit fields are a complex, inefficient feature rarely used.
• Support for 16 bit computers. No consideration is given in D for mixed near/far

pointers and all the machinations necessary to generate good 16 bit code. The D
language design assumes at least a 32 bit flat memory space. D will fit smoothly into
64 bit architectures.

• Mutual dependence of compiler passes. In C++, successfully parsing the source text
relies on having a symbol table, and on the various preprocessor commands. This
makes it impossible to preparse C++ source, and makes writing code analyzers and
syntax directed editors painfully difficult to do correctly.

• Compiler complexity. Reducing the complexity of an implementation makes it more
likely that multiple, correct implementations are available.

• Distinction between . and ->. This distinction is really not necessary. The . operator
serves just as well for pointer dereferencing.

Who D is For

• Programmers who routinely use lint or similar code analysis tools to eliminate bugs
before the code is even compiled.

• People who compile with maximum warning levels turned on and who instruct the
compiler to treat warnings as errors.

• Programming managers who are forced to rely on programming style guidelines to
avoid common C bugs.

• Those who decide the promise of C++ object oriented programming is not fulfilled
due to the complexity of it.

• Programmers who enjoy the expressive power of C++ but are frustrated by the need to
expend much effort explicitly managing memory and finding pointer bugs.

• Projects that need built-in testing and verification.
• Teams who write apps with a million lines of code in it.
• Programmers who think the language should provide enough features to obviate the

continual necessity to manipulate pointers directly.
• Numerical programmers. D has many features to directly support features needed by

numerics programmers, like direct support for the complex data type and defined
behavior for NaN's and infinities. (These are added in the new C99 standard, but not in
C++.)

• D's lexical analyzer and parser are totally independent of each other and of the
semantic analyzer. This means it is easy to write simple tools to manipulate D source
perfectly without having to build a full compiler. It also means that source code can be
transmitted in tokenized form for specialized applications.

Who D is Not For

• Realistically, nobody is going to convert million line C or C++ programs into D, and
since D does not compile unmodified C/C++ source code, D is not for legacy apps.
(However, D supports legacy C API's very well.)

• Very small programs - a scripting or interpreted language like Python, DMDScript, or
Perl is likely more suitable.

• As a first programming language - Basic or Java is more suitable for beginners. D
makes an excellent second language for intermediate to advanced programmers.

http://www.digitalmars.com/dscript/index.html

The D Programming Language

 15

• Language purists. D is a practical language, and each feature of it is evaluated in that
light, rather than by an ideal. For example, D has constructs and semantics that
virtually eliminate the need for pointers for ordinary tasks. But pointers are still there,
because sometimes the rules need to be broken. Similary, casts are still there for those
times when the typing system needs to be overridden.

Major Features of D
This section lists some of the more interesting features of D in various categories.

Object Oriented Programming

Classes
D's object oriented nature comes from classes. The inheritance model is single inheritance
enhanced with interfaces. The class Object sits at the root of the inheritance heirarchy, so all
classes implement a common set of functionality. Classes are instantiated by reference, and so
complex code to clean up after exceptions is not required.

Operator Overloading
Classes can be crafted that work with existing operators to extend the type system to support
new types. An example would be creating a bignumber class and then overloading the +, -, *
and / operators to enable using ordinary algebraic syntax with them.

Productivity

Modules
Source files have a one-to-one correspondence with modules. Instead of #include'ing the text
of a file of declarations, just import the module. There is no need to worry about multiple
imports of the same module, no need to wrapper header files with #ifndef/#endif or
#pragma once kludges, etc.

Declaration vs Definition
C++ usually requires that functions and classes be declared twice - the declaration that goes in
the .h header file, and the definition that goes in the .c source file. This is an error prone and
tedious process. Obviously, the programmer should only need to write it once, and the
compiler should then extract the declaration information and make it available for symbolic
importing. This is exactly how D works.

Example:

 class ABC
 {
 int func() { return 7; }
 static int z = 7;
 }
 int q;

There is no longer a need for a separate definition of member functions, static members,
externs, nor for clumsy syntaxes like:
 int ABC::func() { return 7; }
 int ABC::z = 7;

The D Programming Language

 16

 extern int q;

Note: Of course, in C++, trivial functions like { return 7; } are written inline too, but
complex ones are not. In addition, if there are any forward references, the functions need to be
prototyped. The following will not work in C++:
 class Foo
 {
 int foo(Bar *c) { return c->bar; }
 };

 class Bar
 {
 public:
 int bar() { return 3; }
 };

But the equivalent D code will work:
 class Foo
 {
 int foo(Bar c) { return c.bar; }
 }

 class Bar
 {
 int bar() { return 3; }
 }

Whether a D function is inlined or not is determined by the optimizer settings.

Templates
D templates offer a clean way to support generic programming while offering the power of
partial specialization.

Associative Arrays
Associative arrays are arrays with an arbitrary data type as the index rather than being limited
to an integer index. In essence, associated arrays are hash tables. Associative arrays make it
easy to build fast, efficient, bug-free symbol tables.

Real Typedefs
C and C++ typedefs are really type aliases, as no new type is really introduced. D implements
real typedefs, where:
 typedef int handle;

really does create a new type handle. Type checking is enforced, and typedefs participate in
function overloading. For example:
 int foo(int i);
 int foo(handle h);

Bit type
The fundamental data type is the bit, and D has a bit data type. This is most useful in creating
arrays of bits:
 bit[] foo;

The D Programming Language

 17

Functions
D has the expected support for ordinary functions including global functions, overloaded
functions, inlining of functions, member functions, virtual functions, function pointers, etc. In
addition:

Nested Functions
Functions can be nested within other functions. This is highly useful for code factoring,
locality, and function closure techniques.

Function Literals
Anonymous functions can be embedded directly into an expression.

Dynamic Closures
Nested functions and class member functions can be referenced with closures (also called
delegates), making generic programming much easier and type safe.

In, Out, and Inout Parameters
Not only does specifying this help make functions more self-documenting, it eliminates much
of the necessity for pointers without sacrificing anything, and it opens up possibilities for
more compiler help in finding coding problems.

Such makes it possible for D to directly interface to a wider variety of foreign API's. There
would be no need for workarounds like "Interface Definition Languages".

Arrays
C arrays have several faults that can be corrected:

• Dimension information is not carried around with the array, and so has to be stored
and passed separately. The classic example of this are the argc and argv parameters to
main(int argc, char *argv[]).

• Arrays are not first class objects. When an array is passed to a function, it is converted
to a pointer,even though the prototype confusingly says it's an array. When this
conversion happens, all array type information gets lost.

• C arrays cannot be resized. This means that even simple aggregates like a stack need
to be constructed as a complex class.

• C arrays cannot be bounds checked, because they don't know what the array bounds
are.

• Arrays are declared with the [] after the identifier. This leads to very clumsy syntax to
declare things like a pointer to an array:

• int (*array)[3];

In D, the [] for the array go on the left:

 int[3] *array; declares a pointer to an array of 3 ints
 long[] func(int x); declares a function returning an array of
longs

which is much simpler to understand.

The D Programming Language

 18

D arrays come in 4 varieties: pointers, static arrays, dynamic arrays, and associative arrays.
See Arrays.

Strings
String manipulation is so common, and so clumsy in C and C++, that it needs direct support
in the language. Modern languages handle string concatenation, copying, etc., and so does D.
Strings are a direct consequence of improved array handling.

Resource Management

Garbage Collection
D memory allocation is fully garbage collected. Empirical experience suggests that a lot of the
complicated features of C++ are necessary in order to manage memory deallocation. With
garbage collection, the language gets much simpler.

There's a perception that garbage collection is for lazy, junior programmers. I remember when
that was said about C++, after all, there's nothing in C++ that cannot be done in C, or in
assembler for that matter.

Garbage collection eliminates the tedious, error prone memory allocation tracking code
necessary in C and C++. This not only means much faster development time and lower
maintenance costs, but the resulting program frequently runs faster!

Sure, garbage collectors can be used with C++, and I've used them in my own C++ projects.
The language isn't friendly to collectors, however, impeding the effectiveness of it. Much of
the runtime library code can't be used with collectors.

For a fuller discussion of this, see garbage collection.

Explicit Memory Management
Despite D being a garbage collected language, the new and delete operations can be
overridden for particular classes so that a custom allocator can be used.

RAII
RAII is a modern software development technique to manage resource allocation and
deallocation. D supports RAII in a controlled, predictable manner that is independent of the
garbage collection cycle.

Performance

Lightweight Aggregates
D supports simple C style struct's, both for compatibility with C data structures and because
they're useful when the full power of classes is overkill.

Inline Assembler
Device drivers, high performance system applications, embedded systems, and specialized
code sometimes need to dip into assembly language to get the job done. While D
implementations are not required to implement the inline assembler, it is defined and part of
the language. Most assembly code needs can be handled with it, obviating the need for
separate assemblers or DLL's.

The D Programming Language

 19

Many D implementations will also support intrinsic functions analogously to C's support of
intrinsics for I/O port manipulation, direct access to special floating point operations, etc.

Reliability
A modern language should do all it can to help the programmer flush out bugs in the code.
Help can come in many forms; from making it easy to use more robust techniques, to
compiler flagging of obviously incorrect code, to runtime checking.

Contracts
Design by Contract (invented by B. Meyer) is a revolutionary technique to aid in ensuring the
correctness of programs. D's version of DBC includes function preconditions, function
postconditions, class invariants, and assert contracts. See Contracts for D's implementation.

Unit Tests
Unit tests can be added to a class, such that they are automatically run upon program startup.
This aids in verifying, in every build, that class implementations weren't inadvertantly broken.
The unit tests form part of the source code for a class. Creating them becomes a natural part of
the class development process, as opposed to throwing the finished code over the wall to the
testing group.

Unit tests can be done in other languages, but the result is kludgy and the languages just aren't
accommodating of the concept. Unit testing is a main feature of D. For library functions it
works out great, serving both to guarantee that the functions actually work and to illustrate
how to use the functions.

Consider the many C++ library and application code bases out there for download on the web.
How much of it comes with *any* verification tests at all, let alone unit testing? Less than
1%? The usual practice is if it compiles, we assume it works. And we wonder if the warnings
the compiler spits out in the process are real bugs or just nattering about nits.

Along with design by contract, unit testing makes D far and away the best language for
writing reliable, robust systems applications. Unit testing also gives us a quick-and-dirty
estimate of the quality of some unknown piece of D code dropped in our laps - if it has no unit
tests and no contracts, it's unacceptable.

Debug Attributes and Statements
Now debug is part of the syntax of the language. The code can be enabled or disabled at
compile time, without the use of macros or preprocessing commands. The debug syntax
enables a consistent, portable, and understandable recognition that real source code needs to
be able to generate both debug compilations and release compilations.

Exception Handling
The superior try-catch-finally model is used rather than just try-catch. There's no need to
create dummy objects just to have the destructor implement the finally semantics.

Synchronization
Multithreaded programming is becoming more and more mainstream, and D provides
primitives to build multithreaded programs with. Synchronization can be done at either the
method or the object level.
 synchronize int func() { . }

The D Programming Language

 20

Synchronized functions allow only one thread at a time to be executing that function.

The synchronize statement puts a mutex around a block of statements, controlling access
either by object or globally.

Support for Robust Techniques

• Dynamic arrays instead of pointers
• Reference variables instead of pointers
• Reference objects instead of pointers
• Garbage collection instead of explicit memory management
• Built-in primitives for thread synchronization
• No macros to inadvertently slam code
• Inline functions instead of macros
• Vastly reduced need for pointers
• Integral type sizes are explicit
• No more uncertainty about the signed-ness of chars
• No need to duplicate declarations in source and header files.
• Explicit parsing support for adding in debug code.

Compile Time Checks

• Stronger type checking
• Explicit initialization required
• Unused local variables not allowed
• No empty ; for loop bodies
• Assignments do not yield boolean results
• Deprecating of obsolete API's

Runtime Checking

• assert() expressions
• array bounds checking
• undefined case in switch exception
• out of memory exception
• In, out, and class invariant design by contract support

Compatibility

Operator precedence and evaluation rules
D retains C operators and their precedence rules, order of evaluation rules, and promotion
rules. This avoids subtle bugs that might arise from being so used to the way C does things
that one has a great deal of trouble finding bugs due to different semantics.

Direct Access to C API's
Not only does D have data types that correspond to C types, it provides direct access to C
functions. There is no need to write wrapper functions, parameter swizzlers, nor code to copy
aggregate members one by one.

The D Programming Language

 21

Support for all C data types
Making it possible to interface to any C API or existing C library code. This support includes
structs, unions, enums, pointers, and all C99 types. D includes the capability to set the
alignment of struct members to ensure compatibility with externally imposed data formats.

OS Exception Handling
D's exception handling mechanism will connect to the way the underlying operating system
handles exceptions in an application.

Uses Existing Tools
D produces code in standard object file format, enabling the use of standard assemblers,
linkers, debuggers, profilers, exe compressors, and other analyzers, as well as linking to code
written in other languages.

Project Management

Versioning
D provides built-in support for generation of multiple versions of a program from the same
text. It replaces the C preprocessor #if/#endif technique.

Deprecation
As code evolves over time, some old library code gets replaced with newer, better versions.
The old versions must be available to support legacy code, but they can be marked as
deprecated. Code that uses deprecated versions will be optionally flagged as illegal by a
compiler switch, making it easy for maintenance programmers to identify any dependence on
deprecated features.

No Warnings
D compilers will not generate warnings for questionable code. Code will either be acceptable
to the compiler or it will not be. This will eliminate any debate about which warnings are
valid errors and which are not, and any debate about what to do with them. The need for
compiler warnings is symptomatic of poor language design.

Sample D Program (sieve.d)

/* Sieve of Eratosthenes prime numbers */

import c.stdio;

bit[8191] flags;

int main()
{ int i, count, prime, k, iter;

 printf("10 iterations\n");
 for (iter = 1; iter <= 10; iter++)
 { count = 0;
 flags[] = 1;
 for (i = 0; i < flags.length; i++)
 { if (flags[i])
 { prime = i + i + 3;
 k = i + prime;

The D Programming Language

 22

 while (k < flags.length)
 {
 flags[k] = 0;
 k += prime;
 }
 count += 1;
 }
 }
 }
 printf ("\n%d primes", count);
 return 0;
}

The D Programming Language

 23

Lexical
In D, the lexical analysis is independent of the syntax parsing and the semantic analysis. The
lexical analyzer splits the source text up into tokens. The lexical grammar describes what
those tokens are. The D lexical grammar is designed to be suitable for high speed scanning, it
has a minimum of special case rules, there is only one phase of translation, and to make it
easy to write a correct scanner for. The tokens are readilly recognizable by those familiar with
C and C++.

Phases of Compilation
The process of compiling is divided into multiple phases. Each phase has no dependence on
subsequent phases. For example, the scanner is not perturbed by the semantic analyser. This
separation of the passes makes language tools like syntax directed editors relatively easy to
produce.

1. ascii/wide char
The source file is checked to see if it is in ASCII or wide characters, and the
appropriate scanner is loaded.

2. lexical analysis
The source file is divided up into a sequence of tokens. Pragmas are processed and
removed.

3. syntax analysis
The sequence of tokens is parsed to form syntax trees.

4. semantic analysis
The syntax trees are traversed to declare variables, load symbol tables, assign types,
and in general determine the meaning of the program.

5. optimization
6. code generation

Source Text
D source text can be in one of the following formats:

• UTF-8
• UTF-16BE
• UTF-16LE
• UTF-32BE
• UTF-32LE

Note that UTF-8 is a superset of traditional 7-bit ASCII. The source text is assumed to be in
UTF-8, unless one of the following BOMs (Byte Order Marks) is present at the beginning of
the source text:

The D Programming Language

 24

Format BOM

UTF-8 EF BB BF

UTF-16BE FE FF

UTF-16LE FF FE

UTF-32BE 00 00 FE FF

UTF-32LE FF FE 00 00

UTF-8 none of the above

There are no digraphs or trigraphs in D. The source text is split into tokens using the maximal
munch technique, i.e., the lexical analyzer tries to make the longest token it can. For example
>> is a right shift token, not two greater than tokens.

End of File
 EndOfFile:
 physical end of the file
 \u0000
 \u001A

The source text is terminated by whichever comes first.

End of Line
 EndOfLine:
 \u000D
 \u000A
 \u000D \u000A
 EndOfFile

There is no backslash line splicing, nor are there any limits on the length of a line.

White Space
 WhiteSpace:
 Space
 Space WhiteSpace

 Space:
 \u0020
 \u0009
 \u000B
 \u000C
 EndOfLine
 Comment

White space is defined as a sequence of one or more of spaces, tabs, vertical tabs, form feeds,
end of lines, or comments.

Comments
 Comment:
 /* Characters */
 // Characters EndOfLine
 /+ Characters +/

The D Programming Language

 25

D has three kinds of comments:

1. Block comments can span multiple lines, but do not nest.
2. Line comments terminate at the end of the line.
3. Nesting comments can span multiple lines and can nest.

Comments cannot be used as token concatenators, for example, abc/**/def is two tokens,
abc and def, not one abcdef token.

Identifiers
 Identifier:
 IdentiferStart
 IdentiferStart IdentifierChars

 IdentifierChars:
 IdentiferChar
 IdentiferChar IdentifierChars

 IdentifierStart:
 _
 Letter

 IdentifierChar:
 IdentiferStart
 Digit

Identifiers start with a letter or _, and are followed by any number of letters, _ or digits.
Identifiers can be arbitrarilly long, and are case sensitive. Identifiers starting with __ are
reserved.

String Literals
 StringLiteral:
 SingleQuotedString
 DoubleQuotedString
 EscapeSequence

 SingleQuotedString:
 ' SingleQuotedCharacters '

 SingleQuotedCharacter:
 Character
 EndOfLine

 DoubleQuotedString:
 " DoubleQuotedCharacters "

 DoubleQuotedCharacter:
 Character
 EscapeSequence
 EndOfLine

 EscapeSequence:
 \'
 \"
 \?
 \\
 \a
 \b

The D Programming Language

 26

 \f
 \n
 \r
 \t
 \v
 \ EndOfFile
 \x HexDigit HexDigit
 \ OctalDigit
 \ OctalDigit OctalDigit
 \ OctalDigit OctalDigit OctalDigit
 \u HexDigit HexDigit HexDigit HexDigit

A string literal is either a double quoted string, a single quoted string, or an escape sequence.

Single quoted strings are enclosed by ''. All characters between the '' are part of the string
except for EndOfLine which is regarded as a single \n character. There are no escape
sequences inside '':

 'hello'
 'c:\root\foo.exe'
 'ab\n' string is 4 characters, 'a', 'b', '\', 'n'

Double quoted strings are enclosed by "". Escape sequences can be embedded into them with
the typical \ notation. EndOfLine is regarded as a single \n character.
 "hello"
 "c:\\root\\foo.exe"
 "ab\n" string is 3 characters, 'a', 'b', and a
linefeed
 "ab
 " string is 3 characters, 'a', 'b', and a
linefeed

Escape strings start with a \ and form an escape character sequence. Adjacent escape strings
are concatenated:
 \n the linefeed character
 \t the tab character
 \" the double quote character
 \012 octal
 \x1A hex
 \u1234 wchar character
 \r\n carriage return, line feed

Escape sequences not listed above are errors.

Adjacent strings are concatenated with the ~ operator, or by simple juxtaposition:

 "hello " ~ "world" ~ \n // forms the string
'h','e','l','l','o',' ','w','o','r','l','d',linefeed

The following are all equivalent:
 "ab" "c"
 'ab' 'c'
 'a' "bc"
 "a" ~ "b" ~ "c"
 \0x61"bc"

The D Programming Language

 27

Integer Literals
 IntegerLiteral:
 Integer
 Integer IntegerSuffix

 Integer:
 Decimal
 Binary
 Octal
 Hexadecimal

 IntegerSuffix:
 l
 L
 u
 U
 lu
 Lu
 lU
 LU
 ul
 uL
 Ul
 UL

 Decimal:
 0
 NonZeroDigit
 NonZeroDigit Decimal

 Binary:
 0b BinaryDigits
 0B BinaryDigits

 Octal:
 0 OctalDigits

 Hexadecimal:
 0x HexDigits
 0X HexDigits

Integers can be specified in decimal, binary, octal, or hexadecimal.

Decimal integers are a sequence of decimal digits.

Binary integers are a sequence of binary digits preceded by a '0b'.

Octal integers are a sequence of octal digits preceded by a '0'.

Hexadecimal integers are a sequence of hexadecimal digits preceded by a '0x' or followed by
an 'h'.

Integers can be immediately followed by one 'l' or one 'u' or both.

The type of the integer is resolved as follows:

The D Programming Language

 28

1. If it is decimal it is the last representable of ulong, long, or int.
2. If it is not decimal, it is the last representable of ulong, long, uint, or int.
3. If it has the 'u' suffix, it is the last representable of ulong or uint.
4. If it has the 'l' suffix, it is the last representable of ulong or long.
5. If it has the 'u' and 'l' suffixes, it is ulong.

Floating Literals
 FloatLiteral:
 Float
 Float FloatSuffix
 Float ImaginarySuffix
 Float FloatSuffix ImaginarySuffix

 Float:
 DecimalFloat
 HexFloat

 FloatSuffix:
 f
 F
 l
 L

 ImaginarySuffix:
 i
 I

Floats can be in decimal or hexadecimal format, as in standard C.

Hexadecimal floats are preceded with a 0x and the exponent is a p or P followed by a power
of 2.

Floats can be followed by one f, F, l or L suffix. The f or F suffix means it is a float, and l or
L means it is an extended.

If a floating literal is followed by i or I, then it is an ireal (imaginary) type.

Examples:

 0x1.FFFFFFFFFFFFFp1023 // double.max
 0x1p-52 // double.epsilon
 1.175494351e-38F // float.min
 6.3i // idouble 6.3
 6.3fi // ifloat 6.3
 6.3LI // ireal 6.3

It is an error if the literal exceeds the range of the type. It is not an error if the literal is
rounded to fit into the significant digits of the type.

Complex literals are not tokens, but are assembled from real and imaginary expressions in the
semantic analysis:

 4.5 + 6.2i // complex number

The D Programming Language

 29

Keywords
Keywords are reserved identifiers.
 Keyword:
 abstract
 alias
 align
 asm
 assert
 auto

 bit
 body
 break
 byte

 case
 cast
 catch
 cent
 char
 class
 cfloat
 cdouble
 creal
 const
 continue

 debug
 default
 delegate
 delete
 deprecated
 do
 double

 else
 enum
 export
 extern

 false
 final
 finally
 float
 for
 function

 super
 null
 new
 short
 int
 long
 ifloat
 idouble
 ireal
 if
 switch
 synchronized
 return
 goto
 struct

The D Programming Language

 30

 interface
 import
 static
 override
 in
 out
 inout
 private
 protected
 public
 invariant
 real

 this
 throw
 true
 try
 typedef

 ubyte
 ucent
 uint
 ulong
 union
 ushort

 version
 void
 volatile

 wchar
 while
 with

Tokens
 Token:
 Identifier
 StringLiteral
 IntegerLiteral
 FloatLiteral
 Keyword
 /
 /=
 .
 ..
 ...
 &
 &=
 &&
 |
 |=
 ||
 -
 -=
 --
 +
 +=
 ++
 <
 <=
 <<

The D Programming Language

 31

 <<=
 <>
 <>=
 >
 >=
 >>=
 >>>=
 >>
 >>>
 !
 !=
 !==
 !<>
 !<>=
 !<
 !<=
 !>
 !>=
 (
)
 [
]
 {
 }
 ?
 ,
 ;
 :
 $
 =
 ==
 ===
 *
 *=
 %
 %=
 ^
 ^=
 ~
 ~=

Pragmas
Pragmas are special token sequences that give instructions to the compiler. Pragmas are
processed by the lexical analyzer, may appear between any other tokens, and do not affect the
syntax parsing.

There is currently only one pragma, the #line pragma.

 Pragma
 # line Integer EndOfLine
 # line Integer Filespec EndOfLine

 Filespec
 " Characters "

This sets the source line number to Integer, and optionally the source file name to Filespec,
beginning with the next line of source text. The source file and line number is used for
printing error messages and for mapping generated code back to the source for the symbolic
debugging output.

The D Programming Language

 32

For example:

 int #line 6 "foo\bar"
 x; // this is now line 6 of file foo\bar

Note that the backslash character is not treated specially inside Filespec strings.

The D Programming Language

 33

Modules
 Module:
 ModuleDeclaration DeclDefs
 DeclDefs

 DeclDefs:
 DeclDef
 DeclDef DeclDefs

 DeclDef:
 AttributeSpecifier
 ImportDeclaration
 EnumDeclaration
 ClassDeclaration
 InterfaceDeclaration
 AggregateDeclaration
 Declaration
 Constructor
 Destructor
 Invariant
 Unittest
 StaticConstructor
 StaticDestructor
 DebugSpecification
 VersionSpecification
 ;

Modules have a one-to-one correspondence with source files. The module name is the file
name with the path and extension stripped off.

Modules automatically provide a namespace scope for their contents. Modules superficially
resemble classes, but differ in that:

• There's only one instance of each module, and it is statically allocated.
• There is no virtual table.
• Modules do not inherit, they have no super modules, etc.
• Only one module per file.
• Module symbols can be imported.
• Modules are always compiled at global scope, and are unaffected by surrounding

attributes or other modifiers.

Module Declaration
The ModuleDeclaration sets the name of the module and what package it belongs to. If
absent, the module name is taken to be the same name (stripped of path and extension) of the
source file name.
 ModuleDeclaration:
 module ModuleName ;

 ModuleName:
 Identifier
 ModuleName . Identifier

The Identifier preceding the rightmost are the packages that the module is in. The packages
correspond to directory names in the source file path.

The D Programming Language

 34

If present, the ModuleDeclaration appears syntactically first in the source file, and there can
be only one per source file.

Example:

 module c.stdio; // this is module stdio in the c package

By convention, package and module names are all lower case. This is because those names
have a one-to-one correspondence with the operating system's directory and file names, and
many file systems are not case sensitive. All lower case package and module names will
minimize problems moving projects between dissimilar file systems.

Import Declaration
Rather than text include files, D imports symbols symbolically with the import declaration:
 ImportDeclaration:
 import ModuleNameList ;

 ModuleNameList:
 ModuleName
 ModuleName , ModuleNameList

The rightmost Identifier becomes the module name. The top level scope in the module is
merged with the current scope.

Example:

 import c.stdio; // import module stdio from the c package
 import foo, bar; // import modules foo and bar

Scope and Modules
Each module forms its own namespace. When a module is imported into another module, all
its top level declarations are available without qualification. Ambiguities are illegal, and can
be resolved by explicitly qualifying the symbol with the module name.

For example, assume the following modules:

 Module foo
 int x = 1;
 int y = 2;

 Module bar
 int y = 3;
 int z = 4;

then:
 import foo;
 ...
 q = y; // sets q to foo.y

and:
 import foo;
 int y = 5;
 q = y; // local y overrides foo.y

and:

The D Programming Language

 35

 import foo;
 import bar;
 q = y; // error: foo.y or bar.y?

and:
 import foo;
 import bar;
 q = bar.y; // q set to 3

Static Construction and Destruction
Static constructors are code that gets executed to initialize a module or a class before the
main() function gets called. Static destructors are code that gets executed after the main()
function returns, and are normally used for releasing system resources.

Order of Static Construction
The order of static initialization is implicitly determined by the import declarations in each
module. Each module is assumed to depend on any imported modules being statically
constructed first. Other than following that rule, there is no imposed order on executing the
module static constructors.

Cycles (circular dependencies) in the import declarations are allowed as long as not both of
the modules contain static constructors or static destructors. Violation of this rule will result in
a runtime exception.

Order of Static Construction within a Module
Within a module, the static construction occurs in the lexical order in which they appear.

Order of Static Destruction
It is defined to be exactly the reverse order that static construction was performed in. Static
destructors for individual modules will only be run if the corresponding static constructor
successfully completed.

The D Programming Language

 36

Declarations
 Declaration:
 typedef Decl
 alias Decl
 Decl

 Decl:
 const Decl
 static Decl
 final Decl
 synchronized Decl
 deprecated Decl
 BasicType BasicType2 Declarators ;
 BasicType BasicType2 FunctionDeclarator

 Declarators:
 Declarator
 Declarator , Declarators

Declaration Syntax
Declaration syntax generally reads left to right:
 int x; // x is an int
 int* x; // x is a pointer to int
 int** x; // x is a pointer to a pointer to int
 int[] x; // x is an array of ints
 int*[] x; // x is an array of pointers to ints
 int[]* x; // x is a pointer to an array of ints

Arrays, when lexically next to each other, read right to left:
 int[3] x; // x is an array of 3 ints
 int[3][5] x; // x is an array of 3 arrays of 5 ints
 int[3]*[5] x; // x is an array of 5 pointers to arrays of 3 ints

Pointers to functions are declared as subdeclarations:
 int (*x)(char); // x is a pointer to a function taking a char
argument
 // and returning an int
 int (*[] x)(char); // x is an array of pointers to functions
 // taking a char argument and returning an
int

C-style array declarations, where the [] appear to the right of the identifier, may be used as an
alternative:
 int x[3]; // x is an array of 3 ints
 int x[3][5]; // x is an array of 3 arrays of 5 ints
 int (*x[5])[3]; // x is an array of 5 pointers to arrays of 3 ints

In a declaration declaring multiple declarations, all the declarations must be of the same type:
 int x,y; // x and y are ints
 int* x,y; // x and y are pointers to ints
 int x,*y; // error, multiple types
 int[] x,y; // x and y are arrays of ints
 int x[],y; // error, multiple types

The D Programming Language

 37

Type Defining
Strong types can be introduced with the typedef. Strong types are semantically a distinct type
to the type checking system, for function overloading, and for the debugger.
 typedef int myint;

 void foo(int x) { . }
 void foo(myint m) { . }

 .
 myint b;
 foo(b); // calls foo(myint)

Typedefs can specify a default initializer different from the default initializer of the
underlying type:
 typedef int myint = 7;
 myint m; // initialized to 7

Type Aliasing
It's sometimes convenient to use an alias for a type, such as a shorthand for typing out a long,
complex type like a pointer to a function. In D, this is done with the alias declaration:
 alias abc.Foo.bar myint;

Aliased types are semantically identical to the types they are aliased to. The debugger cannot
distinguish between them, and there is no difference as far as function overloading is
concerned. For example:
 alias int myint;

 void foo(int x) { . }
 void foo(myint m) { . } error, multiply defined function foo

Type aliases are equivalent to the C typedef.

Alias Declarations
A symbol can be declared as an alias of another symbol. For example:
 import string;

 alias string.strlen mylen;
 ...
 int len = mylen("hello"); // actually calls string.strlen()

The following alias declarations are valid:
 template Foo2(T) { alias T t; }
 instance Foo2(int) t1; // a TemplateAliasDeclaration
 alias instance Foo2(int).t t2;
 alias t1.t t3;
 alias t2 t4;
 alias instance Foo2(int) t5;

 t1.t v1; // v1 is type int
 t2 v2; // v2 is type int
 t3 v3; // v3 is type int
 t4 v4; // v4 is type int
 t5.t v5; // v5 is type int

Aliased symbols are useful as a shorthand for a long qualified symbol name, or as a way to
redirect references from one symbol to another:
 version (Win32)

The D Programming Language

 38

 {
 alias win32.foo myfoo;
 }
 version (linux)
 {
 alias linux.bar myfoo;
 }

Aliasing can be used to 'import' a symbol from an import into the current scope:
 alias string.strlen strlen;

Note: Type aliases can sometimes look indistinguishable from alias declarations:
 alias foo.bar abc; // is it a type or a symbol?

The distinction is made in the semantic analysis pass.

The D Programming Language

 39

Types
Basic Data Types

void no type

bit single bit

byte signed 8 bits

ubyte unsigned 8 bits

short signed 16 bits

ushort unsigned 16 bits

int signed 32 bits

uint unsigned 32 bits

long signed 64 bits

ulong unsigned 64 bits

cent signed 128 bits (reserved for future use)

ucent unsigned 128 bits (reserved for future use)

float 32 bit floating point

double 64 bit floating point

real largest hardware implemented floating point size (Implementation Note:
80 bits for Intel CPU's)

ireal a floating point value with imaginary type

ifloat imaginary float

idouble imaginary double

creal a complex number of two floating point values

cfloat complex float

cdouble complex double

char unsigned 8 bit ASCII

wchar unsigned Wide char (Implementation Note: 16 bits on Win32 systems, 32
bits on linux, corresponding to C's wchar_t type)

The bit data type is special. It means one binary bit. Pointers or references to a bit are not
allowed.

Derived Data Types

• pointer
• array
• function

The D Programming Language

 40

User Defined Types

• alias
• typedef
• enum
• struct
• union
• class

Pointer Conversions
Casting pointers to non-pointers and vice versa is not allowed in D. This is to prevent casual
manipulation of pointers as integers, as these kinds of practices can play havoc with the
garbage collector and in porting code from one machine to another. If it is really, absolutely,
positively necessary to do this, use a union, and even then, be very careful that the garbage
collector won't get botched by this.

Implicit Conversions
D has a lot of types, both built in and derived. It would be tedious to require casts for every
type conversion, so implicit conversions step in to handle the obvious ones automatically.

A typedef can be implicitly converted to its underlying type, but going the other way requires
an explicit conversion. For example:

 typedef int myint;
 int i;
 myint m;
 i = m; // OK
 m = i; // error
 m = (myint)i; // OK

Integer Promotions
The following types are implicitly converted to int:
 bit
 byte
 ubyte
 short
 ushort
 enum

Typedefs are converted to their underlying type.

Usual Arithmetic Conversions
The usual arithmetic conversions convert operands of binary operators to a common type. The
operands must already be of arithmetic types. The following rules are applied in order:

1. Typedefs are converted to their underlying type.
2. If either operand is extended, the other operand is converted to extended.
3. Else if either operand is double, the other operand is converted to double.
4. Else if either operand is float, the other operand is converted to float.
5. Else the integer promotions are done on each operand, followed by:

1. If both are the same type, no more conversions are done.

The D Programming Language

 41

2. If both are signed or both are unsigned, the smaller type is converted to the
larger.

3. If the signed type is larger than the unsigned type, the unsigned type is
converted to the signed type.

4. The signed type is converted to the unsigned type.

Delegates
There are no pointers-to-members in D, but a more useful concept called delegates are
supported. Delegates are an aggregate of two pieces of data: an object reference and a
function pointer. The object reference forms the this pointer when the function is called.

Delegates are declared similarly to function pointers, except that the keyword delegate takes
the place of (*), and the identifier occurs afterwards:

 int function(int) fp; // fp is pointer to a function
 int delegate(int) dg; // dg is a delegate to a function

The C style syntax for declaring pointers to functions is also supported:
 int (*fp)(int); // fp is pointer to a function

A delegate is initialized analogously to function pointers:
 int func(int);
 fp = &func; // fp points to func

 class OB
 { int member(int);
 }
 OB o;
 dg = &o.member; // dg is a delegate to object o and
 // member function member

Delegates cannot be initialized with static member functions or non-member functions.

Delegates are called analogously to function pointers:

 fp(3); // call func(3)
 dg(3); // call o.member(3)

The D Programming Language

 42

Properties
Every type and expression has properties that can be queried:
 int.size // yields
 float.nan // yields the floating point value
 (float).nan // yields the floating point nan value
 (3).size // yields 4 (because 3 is an int)
 2.size // syntax error, since "2." is a floating point
number
 int.init // default initializer for int's

Properties for Integral Data Types
 .init initializer (0)
 .size size in bytes
 .max maximum value
 .min minimum value
 .sign should we do this?

Properties for Floating Point Types
 .init initializer (NaN)
 .size size in bytes
 .infinity infinity value
 .nan NaN value
 .sign 1 if -, 0 if +
 .isnan 1 if nan, 0 if not
 .isinfinite 1 if +-infinity, 0 if not
 .isnormal 1 if not nan or infinity, 0 if
 .digits number of digits of precision
 .epsilon smallest increment
 .mantissa number of bits in mantissa
 .maxExp maximum exponent as power of 2 (?)
 .max largest representable value that's not infinity
 .min smallest representable value that's not 0

.init Property

.init produces a constant expression that is the default initializer. If applied to a type, it is the
default initializer for that type. If applied to a variable or field, it is the default initializer for
that variable or field. For example:

 int a;
 int b = 1;
 typedef int t = 2;
 t c;
 t d = cast(t)3;

 int.init // is 0
 a.init // is 0
 b.init // is 1
 t.init // is 2
 c.init // is 2
 d.init // is 3

 struct Foo
 {

The D Programming Language

 43

 int a;
 int b = 7;
 }

 Foo.a.init // is 0
 Foo.b.init // is 7

The D Programming Language

 44

Attributes
 AttributeSpecifier:
 Attribute :
 Attribute DeclDefBlock

 AttributeElseSpecifier:
 AttributeElse :
 AttributeElse DeclDefBlock
 AttributeElse DeclDefBlock else DeclDefBlock

 Attribute:
 LinkageAttribute
 AlignAttribute
 deprecated
 private
 protected
 public
 export
 static
 final
 override
 abstract
 const
 auto

 AttributeElse:
 DebugAttribute
 VersionAttribute

 DeclDefBlock
 DeclDef
 { }
 { DeclDefs }

Attributes are a way to modify one or more declarations. The general forms are:
 attribute declaration; affects the declaration

 attribute: affects all declarations until the
next }
 declaration;
 declaration;
 ...

 attribute affects all declarations in the block
 {
 declaration;
 declaration;
 ...
 }

For attributes with an optional else clause:
 attribute
 declaration;
 else
 declaration;

 attribute affects all declarations in the block
 {

The D Programming Language

 45

 declaration;
 declaration;
 ...
 }
 else
 {
 declaration;
 declaration;
 ...
 }

Linkage Attribute
 LinkageAttribute:
 extern
 extern (LinkageType)

 LinkageType:
 C
 D
 Windows
 Pascal

D provides an easy way to call C functions and operating system API functions, as
compatibility with both is essential. The LinkageType is case sensitive, and is meant to be
extensible by the implementation (they are not keywords). C and D must be supplied, the
others are what makes sense for the implementation. Implementation Note: for Win32
platforms, Windows and Pascal should exist.

C function calling conventions are specified by:

 extern (C):
 int foo(); call foo() with C conventions

D conventions are:
 extern (D):

or:
 extern:

Windows API conventions are:
 extern (Windows):
 void *VirtualAlloc(
 void *lpAddress,
 uint dwSize,
 uint flAllocationType,
 uint flProtect
);

Align Attribute
 AlignAttribute:
 align
 align (Integer)

Specifies the alignment of struct members. align by itself sets it to the default, which matches
the default member alignment of the companion C compiler. Integer specifies the alignment

The D Programming Language

 46

which matches the behavior of the companion C compiler when non-default alignments are
used. A value of 1 means that no alignment is done; members are packed together.

Deprecated Attribute
It is often necessary to deprecate a feature in a library, yet retain it for backwards
compatiblity. Such declarations can be marked as deprecated, which means that the compiler
can be set to produce an error if any code refers to deprecated declarations:
 deprecated
 {
 void oldFoo();
 }

Implementation Note: The compiler should have a switch specifying if deprecated
declarations should be compiled with out complaint or not.

Protection Attribute
Protection is an attribute that is one of private, protected, public or export.

Private means that only members of the enclosing class can access the member, or members
and functions in the same module as the enclosing class. Private members cannot be
overridden. Private module members are equivalent to static declarations in C programs.

Protected means that only members of the enclosing class or any classes derived from that
class can access the member. Protected module members are illegal.

Public means that any code within the executable can access the member.

Export means that any code outside the executable can access the member. Export is
analogous to exporting definitions from a DLL.

Const Attribute
 const

The const attribute declares constants that can be evaluated at compile time. For example:
 const int foo = 7;

 const
 {
 double bar = foo + 6;
 }

Override Attribute
 override

The override attribute applies to virtual functions. It means that the function must override a
function with the same name and parameters in a base class. The override attribute is useful
for catching errors when a base class's member function gets its parameters changed, and all
derived classes need to have their overriding functions updated.
 class Foo
 {
 int bar();
 int abc(int x);
 }

The D Programming Language

 47

 class Foo2 : Foo
 {
 override
 {
 int bar(char c); // error, no bar(char) in Foo
 int abc(int x); // ok
 }
 }

Static Attribute
 static

The static attribute applies to functions and data. It means that the declaration does not apply
to a particular instance of an object, but to the type of the object. In other words, it means
there is no this reference.
 class Foo
 {
 static int bar() { return 6; }
 int foobar() { return 7; }
 }

 ...

 Foo f;
 Foo.bar(); // produces 6
 Foo.foobar(); // error, no instance of Foo
 f.bar(); // produces 6;
 f.foobar(); // produces 7;

Static functions are never virtual.

Static data has only one instance for the entire program, not once per object.

Static does not have the additional C meaning of being local to a file. Use the private
attribute in D to achieve that. For example:

 module foo;
 int x = 3; // x is global
 private int y = 4; // y is local to module foo

Static can be applied to constructors and destructors, producing static constructors and static
destructors.

Auto Attribute
 auto

The auto attribute is used for local variables and for class declarations. For class declarations,
the auto attribute creates an auto class. For local declarations, auto implements the RAII
(Resource Acquisition Is Initialization) protocol. This means that the destructor for an object
is automatically called when the auto reference to it goes out of scope. The destructor is called
even if the scope is exited via a thrown exception, thus auto is used to guarantee cleanup.

Auto cannot be applied to globals, statics, data members, inout or out parameters. Arrays of
autos are not allowed, and auto function return values are not allowed. Assignment to an auto,

The D Programming Language

 48

other than initialization, is not allowed. Rationale: These restrictions may get relaxed in the
future if a compelling reason to appears.

The D Programming Language

 49

Expressions
C and C++ programmers will find the D expressions very familiar, with a few interesting
additions.

Expressions are used to compute values with a resulting type. These values can then be
assigned, tested, or ignored. Expressions can also have side effects.

 Expression:
 AssignExpression
 AssignExpression , Expression

 AssignExpression:
 ConditionalExpression
 ConditionalExpression = AssignExpression
 ConditionalExpression += AssignExpression
 ConditionalExpression -= AssignExpression
 ConditionalExpression *= AssignExpression
 ConditionalExpression /= AssignExpression
 ConditionalExpression %= AssignExpression
 ConditionalExpression &= AssignExpression
 ConditionalExpression |= AssignExpression
 ConditionalExpression ^= AssignExpression
 ConditionalExpression ~= AssignExpression
 ConditionalExpression <<= AssignExpression
 ConditionalExpression >>= AssignExpression
 ConditionalExpression >>>= AssignExpression

 ConditionalExpression:
 OrOrExpression
 OrOrExpression ? Expression : ConditionalExpression

 OrOrExpression:
 AndAndExpression
 AndAndExpression || AndAndExpression

 AndAndExpression:
 OrExpression
 OrExpression && OrExpression

 OrExpression:
 XorExpression
 XorExpression | XorExpression

 XorExpression:
 AndExpression
 AndExpression ^ AndExpression

 AndExpression:
 EqualExpression
 EqualExpression & EqualExpression

 EqualExpression:
 RelExpression
 RelExpression == RelExpression
 RelExpression != RelExpression
 RelExpression === RelExpression
 RelExpression !== RelExpression

 RelExpression:

The D Programming Language

 50

 ShiftExpression
 ShiftExpression < ShiftExpression
 ShiftExpression <= ShiftExpression
 ShiftExpression > ShiftExpression
 ShiftExpression >= ShiftExpression
 ShiftExpression !<>= ShiftExpression
 ShiftExpression !<> ShiftExpression
 ShiftExpression <> ShiftExpression
 ShiftExpression <>= ShiftExpression
 ShiftExpression !> ShiftExpression
 ShiftExpression !>= ShiftExpression
 ShiftExpression !< ShiftExpression
 ShiftExpression !<= ShiftExpression
 ShiftExpression in ShiftExpression

 ShiftExpression:
 AddExpression
 AddExpression << AddExpression
 AddExpression >> AddExpression
 AddExpression >>> AddExpression

 AddExpression:
 MulExpression
 MulExpression + MulExpression
 MulExpression - MulExpression
 MulExpression ~ MulExpression

 MulExpression:
 UnaryExpression
 UnaryExpression * UnaryExpression
 UnaryExpression / UnaryExpression
 UnaryExpression % UnaryExpression

 UnaryExpression:
 PostfixExpression
 & UnaryExpression
 ++ UnaryExpression
 -- UnaryExpression
 * UnaryExpression
 - UnaryExpression
 + UnaryExpression
 ! UnaryExpression
 ~ UnaryExpression
 delete UnaryExpression
 NewExpression
 (Type) UnaryExpression
 (Type) . Identifier

 PostfixExpression:
 PrimaryExpression
 PostfixExpression . Identifier
 PostfixExpression ++
 PostfixExpression --
 PostfixExpression (ArgumentList)
 PostfixExpression [Expression]

 PrimaryExpression:
 Identifier
 this
 super
 null
 true
 false

The D Programming Language

 51

 NumericLiteral
 StringLiteral
 FunctionLiteral
 AssertExpression
 Type . Identifier

 AssertExpression:
 assert (Expression)

 ArgumentList:
 AssignExpression
 AssignExpression , ArgumentList

 NewExpression:
 new BasicType Stars [AssignExpression] Declarator
 new BasicType Stars (ArgumentList)
 new BasicType Stars
 new (ArgumentList) BasicType Stars [AssignExpression]
Declarator
 new (ArgumentList) BasicType Stars (ArgumentList)
 new (ArgumentList) BasicType Stars

 Stars
 nothing
 *
 * Stars

Evaluation Order
Unless otherwise specified, the implementation is free to evaluate the components of an
expression in any order. It is an error to depend on order of evaluation when it is not
specified. For example, the following are illegal:
 i = ++i;
 c = a + (a = b);
 func(++i, ++i);

If the compiler can determine that the result of an expression is illegally dependent on the
order of evaluation, it can issue an error (but is not required to). The ability to detect these
kinds of errors is a quality of implementation issue.

Expressions
 AssignExpression , Expression

The left operand of the , is evaluated, then the right operand is evaluated. The type of the
expression is the type of the right operand, and the result is the result of the right operand.

Assign Expressions
 ConditionalExpression = AssignExpression

The right operand is implicitly converted to the type of the left operand, and assigned to it.
The result type is the type of the lvalue, and the result value is the value of the lvalue after the
assignment.

The left operand must be an lvalue.

Assignment Operator Expressions
 ConditionalExpression += AssignExpression
 ConditionalExpression -= AssignExpression

The D Programming Language

 52

 ConditionalExpression *= AssignExpression
 ConditionalExpression /= AssignExpression
 ConditionalExpression %= AssignExpression
 ConditionalExpression &= AssignExpression
 ConditionalExpression |= AssignExpression
 ConditionalExpression ^= AssignExpression
 ConditionalExpression <<= AssignExpression
 ConditionalExpression >>= AssignExpression
 ConditionalExpression >>>= AssignExpression

Assignment operator expressions, such as:
 a op= b

are semantically equivalent to:
 a = a op b

except that operand a is only evaluated once.

Conditional Expressions
 OrOrExpression ? Expression : ConditionalExpression

The first expression is converted to bool, and is evaluated. If it is true, then the second
expression is evaluated, and its result is the result of the conditional expression. If it is false,
then the third expression is evaluated, and its result is the result of the conditional expression.
If either the second or third expressions are of type void, then the resulting type is void.
Otherwise, the second and third expressions are implicitly converted to a common type which
becomes the result type of the conditional expression.

OrOr Expressions
 AndAndExpression || AndAndExpression

The result type of an OrOr expression is bool, unless the right operand has type void, when
the result is type void.

The OrOr expression evaluates its left operand. If the left operand, converted to type bool,
evaluates to true, then the right operand is not evaluated. If the result type of the OrOr
expression is bool then the result of the expression is true. If the left operand is false, then the
right operand is evaluated. If the result type of the OrOr expression is bool then the result of
the expression is the right operand converted to type bool.

AndAnd Expressions
 OrExpression && OrExpression

The result type of an AndAnd expression is bool, unless the right operand has type void, when
the result is type void.

The AndAnd expression evaluates its left operand. If the left operand, converted to type bool,
evaluates to false, then the right operand is not evaluated. If the result type of the AndAnd
expression is bool then the result of the expression is false. If the left operand is true, then the
right operand is evaluated. If the result type of the AndAnd expression is bool then the result
of the expression is the right operand converted to type bool.

The D Programming Language

 53

Bitwise Expressions
Bit wise expressions perform a bitwise operation on their operands. Their operands must be
integral types. First, the default integral promotions are done. Then, the bitwise operation is
done.

Or Expressions
 XorExpression | XorExpression

The operands are OR'd together.

Xor Expressions
 AndExpression ^ AndExpression

The operands are XOR'd together.

And Expressions
 EqualExpression & EqualExpression

The operands are AND'd together.

Equality Expressions
 RelExpression == RelExpression
 RelExpression != RelExpression

Equality expressions compare the two operands for equality (==) or inequality (!=). The type
of the result is bool. The operands go through the usual conversions to bring them to a
common type before comparison.

If they are integral values or pointers, equality is defined as the bit pattern of the type matches
exactly. Equality for struct objects means the bit patterns of the objects match exactly (the
existence of alignment holes in the objects is accounted for, usually by setting them all to 0
upon initialization). Equality for floating point types is more complicated. -0 and +0 compare
as equal. If either or both operands are NAN, then both the == and != comparisons return
false. Otherwise, the bit patterns are compared for equality.

For complex numbers, equality is defined as equivalent to:

 x.re == y.re && x.im == y.im

and inequality is defined as equivalent to:
 x.re != y.re || x.im != y.im

For class objects, equality is defined as the result of calling Object.eq(). Two null objects
compare as equal, if only one is null they compare not equal.

For static and dynamic arrays, equality is defined as the lengths of the arrays matching, and
all the elements are equal.

Identity Expressions
 RelExpression === RelExpression
 RelExpression !== RelExpression

The D Programming Language

 54

The === compares for identity, and !== compares for not identity. The type of the result is
bool. The operands go through the usual conversions to bring them to a common type before
comparison.

For operand types other than class objects, static or dynamic arrays, identity is defined as
being the same as equality.

For class objects, identity is defined as the object references are for the same object.

For static and dynamic arrays, identity is defined as referring to the same array elements.

Relational Expressions
 ShiftExpression < ShiftExpression
 ShiftExpression <= ShiftExpression
 ShiftExpression > ShiftExpression
 ShiftExpression >= ShiftExpression
 ShiftExpression !<>= ShiftExpression
 ShiftExpression !<> ShiftExpression
 ShiftExpression <> ShiftExpression
 ShiftExpression <>= ShiftExpression
 ShiftExpression !> ShiftExpression
 ShiftExpression !>= ShiftExpression
 ShiftExpression !< ShiftExpression
 ShiftExpression !<= ShiftExpression
 ShiftExpression in ShiftExpression

First, the integral promotions are done on the operands. The result type of a relational
expression is bool.

For class objects, the result of Object.cmp() forms the left operand, and 0 forms the right
operand. The result of the relational expression (o1 op o2) is:

 (o1.cmp(o2) op 0)

It is an error to compare objects if one is null.

For static and dynamic arrays, the result of the relational op is the result of the operator
applied to the first non-equal element of the array. If two arrays compare equal, but are of
different lengths, the shorter array compares as "less" than the longer array.

The D Programming Language

 55

Integer comparisons
Integer comparisons happen when both operands are integral types.

Integer comparison operators

Operator Relation

< less

> greater

<= less or equal

>= greater or equal

== equal

!= not equal

It is an error to have one operand be signed and the other unsigned for a <, <=, > or >=
expression. Use casts to make both operands signed or both operands unsigned.

Floating point comparisons
If one or both operands are floating point, then a floating point comparison is performed.

Useful floating point operations must take into account NAN values. In particular, a relational
operator can have NAN operands. The result of a relational operation on float values is less,
greater, equal, or unordered (unordered means either or both of the operands is a NAN). That
means there are 14 possible comparison conditions to test for:

The D Programming Language

 56

Floating point comparison operators

Operator Greater
Than

Less
Than Equal Unordered Exception Relation

== F F T F no equal

!= T T F T no unordered, less, or
greater

> T F F F yes greater

>= T F T F yes greater or equal

< F T F F yes less

<= F T T F yes less or equal

!<>= F F F T no unordered

<> T T F F yes less or greater

<>= T T T F yes less, equal, or greater

!<= T F F T no unordered or greater

!< T F T T no unordered, greater, or
equal

!>= F T F T no unordered or less

!> F T T T no unordered, less, or
equal

!<> F F T T no unordered or equal

Notes:

1. For floating point comparison operators, (a !op b) is not the same as !(a op b).
2. "Unordered" means one or both of the operands is a NAN.
3. "Exception" means the Invalid Exception is raised if one of the operands is a NAN.

In Expressions
 ShiftExpression in ShiftExpression

An associative array can be tested to see if an element is in the array:
 int foo[char[]];
 .
 if ("hello" in foo)
 .

The in expression has the same precedence as the relational expressions <, <=, etc.

Shift Expressions
 AddExpression << AddExpression
 AddExpression >> AddExpression
 AddExpression >>> AddExpression

The D Programming Language

 57

The operands must be integral types, and undergo the usual integral promotions. The result
type is the type of the left operand after the promotions. The result value is the result of
shifting the bits by the right operand's value.

<< is a left shift. >> is a signed right shift. >>> is an unsigned right shift.

It's illegal to shift by more bits than the size of the quantity being shifted:

 int c;
 c << 33; error

Add Expressions
 MulExpression + MulExpression
 MulExpression - MulExpression

If the operands are of integral types, they undergo integral promotions, and then are brought
to a common type using the usual arithmetic conversions.

If either operand is a floating point type, the other is implicitly converted to floating point and
they are brought to a common type via the usual arithmetic conversions.

If the first operand is a pointer, and the second is an integral type, the resulting type is the type
of the first operand, and the resulting value is the pointer plus (or minus) the second operand
multiplied by the size of the type pointed to by the first operand.

For the + operator, if both operands are arrays of a compatible type, the resulting type is an
array of that compatible type, and the resulting value is the concatenation of the two arrays.

Mul Expressions
 UnaryExpression * UnaryExpression
 UnaryExpression / UnaryExpression
 UnaryExpression % UnaryExpression

The operands must be arithmetic types. They undergo integral promotions, and then are
brought to a common type using the usual arithmetic conversions.

For integral operands, the *, /, and % correspond to multiply, divide, and modulus operations.
For multiply, overflows are ignored and simply chopped to fit into the integral type. If the
right operand of divide or modulus operators is 0, a DivideByZeroException is thrown.

For floating point operands, the operations correspond to the IEEE 754 floating point
equivalents. The modulus operator only works with reals, it is illegal to use it with imaginary
or complex operands.

Unary Expressions
 & UnaryExpression
 ++ UnaryExpression
 -- UnaryExpression
 * UnaryExpression
 - UnaryExpression
 + UnaryExpression
 ! UnaryExpression

The D Programming Language

 58

 ~ UnaryExpression
 delete UnaryExpression
 NewExpression
 (Type) UnaryExpression
 (Type) . Identifier

New Expressions
New expressions are used to allocate memory on the garbage collected heap (default) or using
a class specific allocator.

To allocate multidimensional arrays, the declaration reads in the same order as the prefix
array declaration order.

 char[][] foo; // dynamic array of strings
 ...
 foo = new char[][30]; // allocate 30 arrays of strings

Cast Expressions
In C and C++, cast expressions are of the form:
 (type) unaryexpression

There is an ambiguity in the grammar, however. Consider:
 (foo) - p;

Is this a cast of a dereference of negated p to type foo, or is it p being subtracted from foo?
This cannot be resolved without looking up foo in the symbol table to see if it is a type or a
variable. But D's design goal is to have the syntax be context free - it needs to be able to parse
the syntax without reference to the symbol table. So, in order to distinguish a cast from a
parenthesized subexpression, a different syntax is necessary.

C++ does this by introducing:

 dynamic_cast(expression)

which is ugly and clumsy to type. D introduces the cast keyword:
 cast(foo) -p; cast (-p) to type foo
 (foo) - p; subtract p from foo

cast has the nice characteristic that it is easy to do a textual search for it, and takes some of the
burden off of the relentlessly overloaded () operator.

D differs from C/C++ in another aspect of casts. Any casting of a class reference to a derived
class reference is done with a runtime check to make sure it really is a proper downcast. This
means that it is equivalent to the behavior of the dynamic_cast operator in C++.

 class A { ... }
 class B : A { ... }

 void test(A a, B b)
 {
 B bx = a; error, need cast
 B bx = cast(B) a; bx is null if a is not a B
 A ax = b; no cast needed
 A ax = cast(A) b; no runtime check needed for upcast

The D Programming Language

 59

 }

D does not have a Java style instanceof operator, because the cast operator performs the same
function:
 Java:
 if (a instanceof B)
 D:
 if ((B) a)

Postfix Expressions
 PostfixExpression . Identifier
 PostfixExpression -> Identifier
 PostfixExpression ++
 PostfixExpression --
 PostfixExpression (ArgumentList)
 PostfixExpression [Expression]

Primary Expressions
 Identifier
 this
 super
 null
 true
 false
 NumericLiteral
 StringLiteral
 FunctionLiteral
 AssertExpression
 Type . Identifier

this
Within a non-static member function, this resolves to a reference to the object that called the
function.

super
Within a non-static member function, super resolves to a reference to the object that called
the function, cast to its base class. It is an error if there is no base class. super is not allowed
in struct member functions.

null
The keyword null represents the null pointer value; technically it is of type (void *). It can be
implicitly cast to any pointer type. The integer 0 cannot be cast to the null pointer. Nulls are
also used for empty arrays.

true, false
These are of type bit and resolve to values 1 and 0, respectively.

Function Literals
 FunctionLiteral
 function (ParameterList) FunctionBody
 function Type (ParameterList) FunctionBody
 delegate (ParameterList) FunctionBody

The D Programming Language

 60

 delegate Type (ParameterList) FunctionBody

FunctionLiterals enable embedding anonymous functions directly into expressions. For
example:
 int function(char c) fp;

 void test()
 {
 static int foo(char c) { return 6; }

 fp = foo;
 }

is exactly equivalent to:
 int function(char c) fp;

 void test()
 {
 fp = function int(char c) { return 6;};
 }

And:
 int abc(int delegate(long i));

 void test()
 { int b = 3;
 int foo(long c) { return 6 + b; }

 abc(foo);
 }

is exactly equivalent to:
 int abc(int delegate(long i));

 void test()
 { int b = 3;

 abc(delegate int(long c) { return 6 + b; });
 }

If the Type is omitted, it is treated as void. When comparing with nested functions, the
function form is analogous to static or non-nested functions, and the delegate form is
analogous to non-static nested functions.

Assert Expressions
 AssertExpression:
 assert (Expression)

Asserts evaluate the expression. If the result is false, an AssertException is thrown. If the
result is true, then no exception is thrown. It is an error if the expression contains any side
effects that the program depends on. The compiler may optionally not evaluate assert
expressions at all. The result type of an assert expression is void. Asserts are a fundamental
part of the Design by Contract support in D.

The D Programming Language

 61

Statements
C and C++ programmers will find the D statements very familiar, with a few interesting
additions.
 Statement:
 LabeledStatement
 BlockStatement
 ExpressionStatement
 DeclarationStatement
 IfStatement
 DebugStatement
 VersionStatement
 WhileStatement
 DoWhileStatement
 ForStatement
 SwitchStatement
 CaseStatement
 DefaultStatement
 ContinueStatement
 BreakStatement
 ReturnStatement
 GotoStatement
 WithStatement
 SynchronizeStatement
 TryStatement
 ThrowStatement
 VolatileStatement
 AsmStatement

• Labeled Statements
• Block Statement
• Expression Statement
• Declaration Statement
• If Statement
• Debug Statement
• Version Statement
• While Statement
• Do-While Statement
• For Statement
• Switch Statement
• Case Statement
• Default Statement
• Continue Statement
• Break Statement
• Return Statement
• Goto Statement
• With Statement
• Synchronize Statement
• Try Statement
• Throw Statement
• Volatile Statement
• Asm Statement

The D Programming Language

 62

Labelled Statements
Statements can be labelled. A label is an identifier that precedes a statement.
 LabelledStatement:
 Identifier ':' Statement

Any statement can be labelled, including empty statements, and so can serve as the target of a
goto statement. Labelled statements can also serve as the target of a break or continue
statement.

Labels are in a name space independent of declarations, variables, types, etc. Even so, labels
cannot have the same name as local declarations. The label name space is the body of the
function they appear in. Label name spaces do not nest, i.e. a label inside a block statement is
accessible from outside that block.

Block Statement
A block statement is a sequence of statements enclosed by { }. The statements are executed in
lexical order.
 BlockStatement:
 { }
 { StatementList }

 StatementList:
 Statement
 Statement StatementList

A block statement introduces a new scope for local symbols. A local symbol's name,
however, must be unique within the function.
 void func1(int x)
 { int x; // illegal, x is multiply defined in function scope
 }

 void func2()
 {
 int x;

 { int x; // illegal, x is multiply defined in function scope
 }
 }

 void func3()
 {
 { int x;
 }
 { int x; // illegal, x is multiply defined in function scope
 }
 }

 void func4()
 {
 { int x;
 }
 { x++; // illegal, x is undefined
 }
 }

The D Programming Language

 63

The idea is to avoid bugs in complex functions caused by scoped declarations inadvertantly
hiding previous ones. Local names should all be unique within a function.

Expression Statement
The expression is evaluated.
 ExpressionStatement:
 Expression ;

Expressions that have no affect, like (x + x), are illegal in expression statements.

Declaration Statement
Declaration statements declare and initialize variables.
 DeclarationStatement:
 Type IdentifierList ;

 IdentifierList:
 Variable
 Variable , IdentifierList

 Variable:
 Identifier
 Identifier = AssignmentExpression

If no AssignmentExpression is there to initialize the variable, it is initialized to the default
value for its type.

If Statement
If statements provide simple conditional execution of statements.
 IfStatement:
 if (Expression) Statement
 if (Expression) Statement else Statement

Expression is evaluated and must have a type that can be converted to a boolean. If it's true
the if statement is transferred to, else the else statement is transferred to.

The 'dangling else' parsing problem is solved by associating the else with the nearest if
statement.

While Statement
While statements implement simple loops.
 WhileStatement:
 while (Expression) Statement

Expression is evaluated and must have a type that can be converted to a boolean. If it's true
the statement is executed. After the statement is executed, the Expression is evaluated again,
and if true the statement is executed again. This continues until the Expression evaluates to
false.

The D Programming Language

 64

A break statement will exit the loop. A continue statement will transfer directly to evaluationg
Expression again.

Do-While Statement
Do-While statements implement simple loops.
 DoStatement:
 do Statement while (Expression)

Statement is executed. Then Expression is evaluated and must have a type that can be
converted to a boolean. If it's true the loop is iterated again. This continues until the
Expression evaluates to false.

A break statement will exit the loop. A continue statement will transfer directly to evaluationg
Expression again.

For Statement
For statements implement loops with initialization, test, and increment clauses.
 ForStatement:
 for (Initialize; Test; Increment) Statement

 Initialize:
 empty
 Expression
 Declaration

 Test:
 empty
 Expression

 Increment:
 empty
 Expression

Initializer is executed. Test is evaluated and must have a type that can be converted to a
boolean. If it's true the statement is executed. After the statement is executed, the Increment is
executed. Then Test is evaluated again, and if true the statement is executed again. This
continues until the Test evaluates to false.

A break statement will exit the loop. A continue statement will transfer directly to the
Increment.

If Initializer declares a variable, that variable's scope extends through the end of Statement.
For example:

 for (int i = 0; i < 10; i++)
 foo(i);

is equivalent to:
 { int i;
 for (i = 0; i < 10; i++)
 foo(i);

The D Programming Language

 65

 }

Function bodies cannot be empty:
 for (int i = 0; i < 10; i++)
 ; // illegal

Use instead:
 for (int i = 0; i < 10; i++)
 {
 }

The Initializer may be omitted. Test may also be omitted, and if so, it is treated as if it
evaluated to true.

Switch Statement
A switch statement goes to one of a collection of case statements depending on the value of
the switch expression.
 SwitchStatement:
 switch (Expression) BlockStatement

 CaseStatement:
 case Expression : Statement

 DefaultStatement:
 default: Statement

Expression is evaluated. The result type T must be of integral type or char[] or wchar[]. The
result is compared against each of the case expressions. If there is a match, the corresponding
case statement is transferred to.

If none of the case expressions match, and there is a default statement, the default statement is
transferred to.

If none of the case expressions match, and there is not a default statement, a SwitchException
is thrown. The reason for this is to catch the common programming error of adding a new
value to an enum, but failing to account for the extra value in switch statements.

The case expressions must all evaluate to a constant value or array, and be implicitly
convertible to the type T of the switch Expression.

Case expressions must all evaluate to distinct values. There may not be two or more default
statements.

Case statements and default statements associated with the switch can be nested within block
statements; they do not have to be in the outermost block. For example, this is allowed:

 switch (i)
 {
 case 1:
 {
 case 2:
 }
 break;
 }

The D Programming Language

 66

Like in C and C++, case statements 'fall through' to subsequent case values. A break statement
will exit the switch BlockStatement. For example:
 switch (i)
 {
 case 1:
 x = 3;
 case 2:
 x = 4;
 break;
 case 3:
 x = 5;
 break;
 }

will set x to 4 if i is 1.

Note: Unlike C and C++, strings can be used in switch expressions. For example:

 char[] name;
 ...
 switch (name)
 {
 case "fred":
 case "sally":
 ...
 }

For applications like command line switch processing, this can lead to much more
straightforward code, being clearer and less error prone. Both ascii and wchar strings are
allowed.

Implementation Note: The compiler's code generator may assume that the case statements
are sorted by frequency of use, with the most frequent appearing first and the least frequent
last. Although this is irrelevant as far as program correctness is concerned, it is of
performance interest.

Continue Statement
A continue aborts the current iteration of its enclosing loop statement, and starts the next
iteration.
 ContinueStatement:
 continue;
 continue Identifier ;

continue executes the next iteration of its innermost enclosing while, for, or do loop. The
increment clause is executed.

If continue is followed by Identifier, the Identifier must be the label of an enclosing while, for,
or do loop, and the next iteration of that loop is executed. It is an error if there is no such
statement.

Any intervening finally clauses are executed, and any intervening synchronization objects are
released.

The D Programming Language

 67

Note: If a finally clause executes a return, throw, or goto out of the finally clause, the
continue target is never reached.

Break Statement
A break exits the enclosing statement.
 BreakStatement:
 break;
 break Identifier ;

break exits the innermost enclosing while, for, do, or switch statement, resuming execution at
the statement following it.

If break is followed by Identifier, the Identifier must be the label of an enclosing while, for,
do or switch statement, and that statement is exited. It is an error if there is no such statement.

Any intervening finally clauses are executed, and any intervening synchronization objects are
released.

Note: If a finally clause executes a return, throw, or goto out of the finally clause, the break
target is never reached.

Return Statement
A return exits the current function and supplies its return value.
 ReturnStatement:
 return;
 return Expression ;

Expression is required if the function specifies a return type that is not void. The Expression is
implicitly converted to the function return type.

At least one return statement is required if the function specifies a return type that is not void.

Expression is illegal if the function specifies a void return type.

Before the function actually returns, any enclosing finally clauses are executed, and any
enclosing synchronization objects are released.

The function will not return if any enclosing finally clause does a return, goto or throw that
exits the finally clause.

If there is an out postcondition (see design by contract), that postcondition is executed after
the Expression is evaluated and before the function actually returns.

Goto Statement
A goto transfers to the statement labelled with Identifier.
 GotoStatement:

The D Programming Language

 68

 goto Identifier ;

Any intervening finally clauses are executed, along with releasing any intervening
synchronization mutexes.

It is illegal for a goto to be used to skip initializations.

With Statement
The with statement is a way to simplify repeated references to the same object.
 WithStatement:
 with (Expression) BlockStatement
 with (TemplateInstance) BlockStatement

where Expression evaluates to an Object reference. Within the with body the referenced
Object is searched first for identifier symbols. The with statement
 with (expression)
 {
 ...
 ident;
 }

is semantically equivalent to:
 {
 Object tmp;
 tmp = expression;
 ...
 tmp.ident;
 }

Note that expression only gets evaluated once. The with statement does not change what this
or super refer to.

Synchronize Statement
The synchronize statement wraps a statement with critical section to synchronize access
among multiple threads.
 SynchronizeStatement:
 synchronized Statement
 synchronized (Expression) Statement

synchronized allows only one thread at a time to execute Statement.

synchronized (Expression), where Expression evaluates to an Object reference, allows only
one thread at a time to use that Object to execute the Statement.

The synchronization gets released even if Statement terminates with an exception, goto, or
return.

Example:

 synchronized { ... }

This implements a standard critical section.

The D Programming Language

 69

Try Statement
Exception handling is done with the try-catch-finally statement.
 TryStatement:
 try BlockStatement Catches
 try BlockStatement Catches finally BlockStatement
 try BlockStatement finally BlockStatement

 Catches:
 LastCatch
 Catch
 Catch Catches

 LastCatch:
 catch BlockStatement

 Catch:
 catch (Parameter) BlockStatement

Parameter declares a variable v of type T, where T is Object or derived from Object. v is
initialized by the throw expression if T is of the same type or a base class of the throw
expression. The catch clause will be executed if the exception object is of type T or derived
from T.

If just type T is given and no variable v, then the catch clause is still executed.

It is an error if any Catch Parameter type T1 hides a subsequent Catch with type T2, i.e. it is
an error if T1 is the same type as or a base class of T2.

LastCatch catches all exceptions.

Throw Statement
Throw an exception.
 ThrowStatement:
 throw Expression ;

Expression is evaluated and must be an Object reference. The Object reference is thrown as
an exception.

Volatile Statement
Do not cache values across volatile statement boundaries.
 VolatileStatement:
 volatile Statement

Statement is evaluated, and no common subexpressions or memory references cached in
registers are propagated either into it or out of it. This is useful for accessing memory that can
change asynchronously, such as memory mapped I/O or memory accessed by multiple
threads.

A volatile statement does not guarantee atomicity. For that, use synchronized statements.

The D Programming Language

 70

Asm Statement
Inline assembler is supported with the asm statement:
 AsmStatement:
 asm { }
 asm { AsmInstructionList }

 AsmInstructionList:
 AsmInstruction ;
 AsmInstruction ; AsmInstructionList

An asm statement enables the direct use of assembly language instructions. This makes it easy
to obtain direct access to special CPU features without resorting to an external assembler. The
D compiler will take care of the function calling conventions, stack setup, etc.

The format of the instructions is, of course, highly dependent on the native instruction set of
the target CPU, and so is implementation defined. But, the format will follow the following
conventions:

• It must use the same tokens as the D language uses.
• The comment form must match the D language comments.
• Asm instructions are terminated by a ;, not by an end of line.

These rules exist to ensure that D source code can be tokenized independently of syntactic or
semantic analysis.

For example, for the Intel Pentium:

 int x = 3;
 asm
 {
 mov EAX,x; // load x and put it in register EAX
 }

Inline assembler can be used to access hardware directly:
 int gethardware()
 {
 asm
 {
 mov EAX, dword ptr 0x1234;
 }
 }

For some D implementations, such as a translator from D to C, an inline assembler makes no
sense, and need not be implemented. The version statement can be used to account for this:
 version (InlineAsm)
 {
 asm
 {
 ...
 }
 }
 else
 {
 ... some workaround ...
 }

The D Programming Language

 71

The D Programming Language

 72

Arrays
There are four kinds of arrays:
int* p; Pointers to data

int[3] s; Static arrays

int[] a; Dynamic arrays

int[char[]] x; Associative arrays (discussed later)

Pointers
 int* p;

These are simple pointers to data, analogous to C pointers. Pointers are provided for
interfacing with C and for specialized systems work. There is no length associated with it, and
so there is no way for the compiler or runtime to do bounds checking, etc., on it. Most
conventional uses for pointers can be replaced with dynamic arrays, out and inout
parameters, and handles (references).

Static Arrays
 int[3] s;

These are analogous to C arrays. Static arrays are distinguished by having a length fixed at
compile time.

Dynamic Arrays
 int[] a;

Dynamic arrays contain a length and a garbage collected pointer to the array data.

Array Declarations
There are two ways to declare arrays, prefix and postfix. The prefix form is the preferred
method, especially for non-trivial types.

Prefix Array Declarations
Prefix declarations appear before the identifier being declared and read right to left, so:
 int[] a; // dynamic array of ints
 int[4][3] b; // array of 3 arrays of 4 ints each
 int[][5] c; // array of 5 dynamic arrays of ints.
 int*[]*[3] d; // array of 3 pointers to dynamic arrays of pointers
to ints
 int[]* e; // pointer to dynamic array of ints

Postfix Array Declarations
Postfix declarations appear after the identifier being declared and read left to right. Each
group lists equivalent declarations:
 // dynamic array of ints
 int[] a;
 int a[];

The D Programming Language

 73

 // array of 3 arrays of 4 ints each
 int[4][3] b;
 int[4] b[3];
 int b[3][4];

 // array of 5 dynamic arrays of ints.
 int[][5] c;
 int[] c[5];
 int c[5][];

 // array of 3 pointers to dynamic arrays of pointers to ints
 int*[]*[3] d;
 int*[]* d[3];
 int* (*d[3])[];

 // pointer to dynamic array of ints
 int[]* e;
 int (*e[]);

Rationale: The postfix form matches the way arrays are declared in C and C++, and
supporting this form provides an easy migration path for programmers used to it.

Usage
There are two broad kinds of operations to do on an array - affecting the handle to the array,
and affecting the contents of the array. C only has operators to affect the handle. In D, both
are accessible.

The handle to an array is specified by naming the array, as in p, s or a:

 int* p;
 int[3] s;
 int[] a;

 int* q;
 int[3] t;
 int[] b;

 p = q; p points to the same thing q does.
 p = s; p points to the first element of the array s.
 p = a; p points to the first element of the array a.

 s = ...; error, since s is a compiled in static
 reference to an array.

 a = p; error, since the length of the array pointed
 to by p is unknown
 a = s; a is initialized to point to the s array
 a = b; a points to the same array as b does

Slicing
Slicing an array means to specify a subarray of it. For example:
 int[10] a; declare array of 10 ints
 int[] b;

 b = a[1..3]; a[1..3] is a 2 element array consisting of
 a[1] and a[2]

The [] is shorthand for a slice of the entire array. For example, the assignments to b:

The D Programming Language

 74

 int[10] a;
 int[] b;

 b = a;
 b = a[];
 b = a[0 .. a.length];

are all semantically equivalent.

Slicing is not only handy for referring to parts of other arrays, but for converting pointers into
bounds-checked arrays:

 int* p;
 int[] b = p[0..8];

Array Copying
When the slice operator appears as the lvalue of an assignment expression, it means that the
contents of the array are the target of the assignment rather than a reference to the array.
Array copying happens when the lvalue is a slice, and the rvalue is an array of or pointer to
the same type.
 int[3] s;
 int[3] t;

 s[] = t; the 3 elements of t[3] are copied into s[3]
 s[] = t[]; the 3 elements of t[3] are copied into s[3]
 s[1..2] = t[0..1]; same as s[1] = t[0]
 s[0..2] = t[1..3]; same as s[0] = t[1], s[1] = t[2]
 s[0..4] = t[0..4]; error, only 3 elements in s
 s[0..2] = t; error, different lengths for lvalue and
rvalue

Overlapping copies are an error:
 s[0..2] = s[1..3]; error, overlapping copy
 s[1..3] = s[0..2]; error, overlapping copy

Disallowing overlapping makes it possible for more aggressive parallel code optimizations
than possible with the serial semantics of C.

Array Setting
If a slice operator appears as the lvalue of an assignment expression, and the type of the
rvalue is the same as the element type of the lvalue, then the lvalue's array contents are set to
the rvalue.
 int[3] s;
 int* p;

 s[] = 3; same as s[0] = 3, s[1] = 3, s[2] = 3
 p[0..2] = 3; same as p[0] = 3, p[1] = 3

Array Concatenation
The binary operator ~ is the cat operator. It is used to concatenate arrays:

 int[] a;
 int[] b;
 int[] c;

 a = b ~ c; Create an array from the concatenation of the

The D Programming Language

 75

 b and c arrays

Many languages overload the + operator to mean concatenation. This confusingly leads to,
does:
 "10" + 3

produce the number 13 or the string "103" as the result? It isn't obvious, and the language
designers wind up carefully writing rules to disambiguate it - rules that get incorrectly
implemented, overlooked, forgotten, and ignored. It's much better to have + mean addition,
and a separate operator to be array concatenation.

Similarly, the ~= operator means append, as in:

 a ~= b; a becomes the concatenation of a and b

Concatenation always creates a copy of its operands, even if one of the operands is a 0 length
array, so:
 a = b a refers to b
 a = b ~ c[0..0] a refers to a copy of b

Array Operations
In general, (a[n..m] op e) is defined as:
 for (i = n; i < m; i++)
 a[i] op e;

So, for the expression:
 a[] = b[] + 3;

the result is equivalent to:
 for (i = 0; i < a.length; i++)
 a[i] = b[i] + 3;

When more than one [] operator appears in an expression, the range represented by all must
match.
 a[1..3] = b[] + 3; error, 2 elements not same as 3 elements

Examples:
 int[3] abc; // static array of 3 ints
 int[] def = { 1, 2, 3 }; // dynamic array of 3 ints

 void dibb(int *array)
 {
 array[2]; // means same thing as *(array + 2)
 *(array + 2); // get 2nd element
 }

 void diss(int[] array)
 {
 array[2]; // ok
 *(array + 2); // error, array is not a pointer
 }

 void ditt(int[3] array)
 {
 array[2]; // ok
 *(array + 2); // error, array is not a pointer

The D Programming Language

 76

 }

Rectangular Arrays
Experienced FORTRAN numerics programmers know that multidimensional "rectangular"
arrays for things like matrix operations are much faster than trying to access them via pointers
to pointers resulting from "array of pointers to array" semantics. For example, the D syntax:
 double[][] matrix;

declares matrix as an array of pointers to arrays. (Dynamic arrays are implemented as pointers
to the array data.) Since the arrays can have varying sizes (being dynamically sized), this is
sometimes called "jagged" arrays. Even worse for optimizing the code, the array rows can
sometimes point to each other! Fortunately, D static arrays, while using the same syntax, are
implemented as a fixed rectangular layout:
 double[3][3] matrix;

declares a rectangular matrix with 3 rows and 3 columns, all contiguously in memory. In other
languages, this would be called a multidimensional array and be declared as:
 double matrix[3,3];

Array Properties
Static array properties are:
size Returns the array length multiplied by the number of bytes per array element.

length Returns the number of elements in the array. This is a fixed quantity for static arrays.

dup Create a dynamic array of the same size and copy the contents of the array into it.

reverse Reverses in place the order of the elements in the array. Returns the array.

sort Sorts in place the order of the elements in the array. Returns the array.

Dynamic array properties are:

size Returns the size of the dynamic array reference, which is 8 on 32 bit machines.

length Get/set number of elements in the array.

dup Create a dynamic array of the same size and copy the contents of the array into it.

reverse Reverses in place the order of the elements in the array. Returns the array.

sort Sorts in place the order of the elements in the array. Returns the array.

Examples:

 p.length error, length not known for pointer
 s.length compile time constant 3
 a.length runtime value

 p.dup error, length not known
 s.dup creates an array of 3 elements, copies
 elements s into it
 a.dup creates an array of a.length elements, copies
 elements of a into it

The D Programming Language

 77

Setting Dynamic Array Length
The .length property of a dynamic array can be set as the lvalue of an = operator:
 array.length = 7;

This causes the array to be reallocated in place, and the existing contents copied over to the
new array. If the new array length is shorter, only enough are copied to fill the new array. If
the new array length is longer, the remainder is filled out with the default initializer.

To maximize efficiency, the runtime always tries to resize the array in place to avoid extra
copying. It will always do a copy if the new size is larger and the array was not allocated via
the new operator or a previous resize operation.

This means that if there is an array slice immediately following the array being resized, the
resized array could overlap the slice; i.e.:

 char[] a = new char[20];
 char[] b = a[0..10];
 char[] c = a[10..20];

 b.length = 15; // always resized in place because it is sliced
 // from a[] which has enough memory for 15 chars
 b[11] = 'x'; // a[15] and c[5] are also affected

 a.length = 1;
 a.length = 20; // no net change to memory layout

 c.length = 12; // always does a copy because c[] is not at the
 // start of a gc allocation block
 c[5] = 'y'; // does not affect contents of a[] or b[]

 a.length = 25; // may or may not do a copy
 a[3] = 'z'; // may or may not affect b[3] which still overlaps
 // the old a[3]

To guarantee copying behavior, use the .dup property to ensure a unique array that can be
resized.

These issues also apply to concatenting arrays with the ~ and ~= operators.

Resizing a dynamic array is a relatively expensive operation. So, while the following method
of filling an array:

 int[] array;
 while (1)
 { c = getinput();
 if (!c)
 break;
 array.length = array.length + 1;
 array[array.length - 1] = c;
 }

will work, it will be efficient. A more practical approach would be to minimize the number of
resizes:
 int[] array;

The D Programming Language

 78

 array.length = 100; // guess
 for (i = 0; 1; i++)
 { c = getinput();
 if (!c)
 break;
 if (i == array.length)
 array.length = array.length * 2;
 array[i] = c;
 }
 array.length = i;

Picking a good initial guess is an art, but you usually can pick a value covering 99% of the
cases. For example, when gathering user input from the console - it's unlikely to be longer
than 80.

Array Bounds Checking
It is an error to index an array with an index that is less than 0 or greater than or equal to the
array length. If an index is out of bounds, an ArrayBoundsError exception is raised if detected
at runtime, and an error if detected at compile time. A program may not rely on array bounds
checking happening, for example, the following program is incorrect:
 try
 {
 for (i = 0; ; i++)
 {
 array[i] = 5;
 }
 }
 catch (ArrayBoundsError)
 {
 // terminate loop
 }

The loop is correctly written:
 for (i = 0; i < array.length; i++)
 {
 array[i] = 5;
 }

Implementation Note: Compilers should attempt to detect array bounds errors at compile
time, for example:
 int[3] foo;
 int x = foo[3]; // error, out of bounds

Insertion of array bounds checking code at runtime should be turned on and off with a
compile time switch.

Array Initialization

• Pointers are initialized to null.
• Static array contents are initialized to the default initializer for the array element type.
• Dynamic arrays are initialized to having 0 elements.
• Associative arrays are initialized to having 0 elements.

Static Initialization of Static Arrays
 int[3] a = [1:2, 3]; // a[0] = 0, a[1] = 2, a[2] = 3

This is most handy when the array indices are given by enums:

The D Programming Language

 79

 enum Color { red, blue, green };

 int value[Color.max] = [blue:6, green:2, red:5];

If any members of an array are initialized, they all must be. This is to catch common errors
where another element is added to an enum, but one of the static instances of arrays of that
enum was overlooked in updating the initializer list.

Special Array Types

Arrays of Bits
Bit vectors can be constructed:
 bit[10] x; // array of 10 bits

The amount of storage used up is implementation dependent. Implementation Note: on Intel
CPUs it would be rounded up to the next 32 bit size.
 x.length // 10, number of bits
 x.size // 4, bytes of storage

So, the size per element is not (x.size / x.length).

Strings
Languages should be good at handling strings. C and C++ are not good at it. The primary
difficulties are memory management, handling of temporaries, constantly rescanning the
string looking for the terminating 0, and the fixed arrays.

Dynamic arrays in D suggest the obvious solution - a string is just a dynamic array of
characters. String literals become just an easy way to write character arrays.

 char[] str;
 char[] str1 = "abc";

Strings can be copied, compared, concatenated, and appended:
 str1 = str2;
 if (str1 < str3) ...
 func(str3 + str4);
 str4 += str1;

with the obvious semantics. Any generated temporaries get cleaned up by the garbage
collector (or by using alloca()). Not only that, this works with any array not just a special
String array.

A pointer to a char can be generated:

 char *p = &str[3]; // pointer to 4th element
 char *p = str; // pointer to 1st element

Since strings, however, are not 0 terminated in D, when transfering a pointer to a string to C,
add a terminating 0:
 str.append(0);

The type of a string is determined by the semantic phase of compilation. The type is one of:
ascii, wchar, ascii[], wchar[], and is determined by implicit conversion rules. If there are two
equally applicable implicit conversions, the result is an error. To disambiguate these cases, a
cast is approprate:

The D Programming Language

 80

 (wchar [])"abc" // this is an array of wchar characters

It is an error to implicitly convert a string containing non-ascii characters to an ascii string or
an ascii constant.
 (ascii)"\u1234" // error

Strings a single character in length can also be exactly converted to a char or wchar constant:
 char c;
 wchar u;

 c = "b"; // c is assigned the character 'b'
 u = 'b'; // u is assigned the wchar character 'b'
 u = 'bc'; // error - only one wchar character at a time
 u = "b"[0]; // u is assigned the wchar character 'b'
 u = \r; // u is assigned the carriage return wchar
character

printf() and Strings
printf() is a C function and is not part of D. printf() will print C strings, which are 0
terminated. There are two ways to use printf() with D strings. The first is to add a terminating
0, and cast the result to a char*:
 str.append(0);
 printf("the string is '%s'\n", (char *)str);

The second way is to use the precision specifier. The way D arrays are laid out, the length
comes first, so the following works:
 printf("the string is '%.*s'\n", str);

In the future, it may be necessary to just add a new format specifier to printf() instead of
relying on an implementation dependent detail.

Associative Arrays
D goes one step further with arrays - adding associative arrays. Associative arrays have an
index that is not necessarilly an integer, and can be sparsely populated. The index for an
associative array is called the key.

Associative arrays are declared by placing the key type within the [] of an array declaration:

 int[char[]] b; // associative array b of ints that are
 // indexed by an array of characters
 b["hello"] = 3; // set value associated with key "hello" to 3
 func(b["hello"]); // pass 3 as parameter to func()

Particular keys in an associative array can be removed with the delete operator:
 delete b["hello"];

This confusingly appears to delete the value of b["hello"], but does not, it removes the key
"hello" from the associative array.

The InExpression yields a boolean result indicating if a key is in an associative array or not:

 if ("hello" in b)
 ...

The D Programming Language

 81

Key types cannot be functions or voids.

Properties
Properties for associative arrays are:
size Returns the size of the reference to the associative array; it is typically 8.

length Returns number of values in the associative array. Unlike for dynamic arrays, it is
read-only.

keys Returns dynamic array, the elements of which are the keys in the associative array.

values Returns dynamic array, the elements of which are the values in the associative array.

rehash
Reorganizes the associative array in place so that lookups are more efficient. rehash is
effective when, for example, the program is done loading up a symbol table and now
needs fast lookups in it. Returns a reference to the reorganized array.

Associative Array Example: word count
 import stdio; // C printf()
 import file; // D file I/O

 int main (char[][] args)
 {
 int word_total;
 int line_total;
 int char_total;
 int[char[]] dictionary;

 printf(" lines words bytes file\n");
 for (int i = 1; i < args.length; ++i) // program arguments
 {
 char[] input; // input buffer
 int w_cnt, l_cnt, c_cnt; // word, line, char counts
 int inword;
 int wstart;

 input = File.read(args[i]); // read file into
input[]

 for (int j = 0; j < input.length; j++)
 { char c;

 c = input[j];
 if (c == "\n")
 ++l_cnt;
 if (c >= "0" && c <= "9")
 {
 }
 else if (c >= "a" && c <= "z" ||
 c >= "A" && c <= "Z")
 {
 if (!inword)
 {
 wstart = j;
 inword = 1;
 ++w_cnt;
 }
 }

The D Programming Language

 82

 else if (inword)
 { char[] word = input[wstart .. j];

 dictionary[word]++; // increment count for
word
 inword = 0;
 }
 ++c_cnt;
 }
 if (inword)
 { char[] word = input[wstart .. input.length];
 dictionary[word]++;
 }
 printf("%8ld%8ld%8ld %.*s\n", l_cnt, w_cnt, c_cnt, args[i]);
 line_total += l_cnt;
 word_total += w_cnt;
 char_total += c_cnt;
 }

 if (args.length > 2)
 {
 printf("-------------------------------------\n%8ld%8ld%8ld
total",
 line_total, word_total, char_total);
 }

 printf("-------------------------------------\n");
 char[][] keys = dictionary.keys; // find all words in
dictionary[]
 for (int i = 0; i < keys.length; i++)
 { char[] word;

 word = keys[i];
 printf("%3d %.*s\n", dictionary[word], word);
 }
 return 0;
 }

The D Programming Language

 83

Structs, Unions, Enums
Structs, Unions
 AggregateDeclaration:
 Tag { DeclDefs }
 Tag Identifier { DeclDefs }
 Tag Identifier ;

 Tag:
 struct
 union

They work like they do in C, with the following exceptions:

• no bit fields
• alignment can be explicitly specified
• no separate tag name space - tag names go into the current scope
• declarations like:
• struct ABC x;

are not allowed, replace with:

 ABC x;

• anonymous structs/unions are allowed as members of other structs/unions
• Default initializers for members can be supplied.
• Member functions and static members are allowed.

Structs and unions are meant as simple aggregations of data, or as a way to paint a data
structure over hardware or an external type. External types can be defined by the operating
system API, or by a file format. Object oriented features are provided with the class data type.

Static Initialization of Structs
Static struct members are by default initialized to 0, and floating point values to NAN. If a
static initializer is supplied, the members are initialized by the member name, colon,
expression syntax. The members may be initialized in any order.
 struct X { int a; int b; int c; int d = 7;}
 static X x = { a:1, b:2}; // c is set to 0, d to 7
 static X z = { c:4, b:5, a:2 , d:5}; // z.a = 2, z.b = 5, z.c =
4, d = 5

Static Initialization of Unions
Unions are initialized explicitly.
 union U { int a; double b; }
 static U u = { b : 5.0 }; // u.b = 5.0

Other members of the union that overlay the initializer, but occupy more storage, have the
extra storage initialized to zero.

The D Programming Language

 84

Enums
 EnumDeclaration:
 enum identifier { EnumMembers }
 enum { EnumMembers }
 enum identifier ;

 EnumMembers:
 EnumMember
 EnumMember ,
 EnumMember , EnumMembers

 EnumMember:
 Identifier
 Identifier = Expression

Enums replace the usual C use of #define macros to define constants. Enums can be either
anonymous, in which case they simply define integral constants, or they can be named, in
which case they introduce a new type.
 enum { A, B, C } // anonymous enum

Defines the constants A=0, B=1, C=2 in a manner equivalent to:
 const int A = 0;
 const int B = 1;
 const int C = 2;

Whereas:
 enum X { A, B, C } // named enum

Define a new type X which has values X.A=0, X.B=1, X.C=2

Named enum members can be implicitly cast to integral types, but integral types cannot be
implicitly cast to an enum type.

Enums must have at least one member.

If an Expression is supplied for an enum member, the value of the member is set to the result
of the Expression. The Expression must be resolvable at compile time. Subsequent enum
members with no Expression are set to the value of the previous member plus one:

 enum { A, B = 5+7, C, D = 8, E }

Sets A=0, B=12, C=13, D=8, and E=9.

The D Programming Language

 85

Enum Properties
 .min Smallest value of enum
 .max Largest value of enum
 .size Size of storage for an enumerated value

 For example:

 X.min is X.A
 X.max is X.C
 X.size is same as int.size

Initialization of Enums
In the absense of an explicit initializer, an enum variable is initialized to the first enum value.
 enum X { A=3, B, C }
 X x; // x is initialized to 3

The D Programming Language

 86

Classes
The object-oriented features of D all come from classes. The class heirarchy has as its root the
class Object. Object defines a minimum level of functionality that each derived class has, and
a default implementation for that functionality.

Classes are programmer defined types. Support for classes are what make D an object
oriented language, giving it encapsulation, inheritance, and polymorphism. D classes support
the single inheritance paradigm, extended by adding support for interfaces. Class objects are
instantiated by reference only.

A class can be exported, which means its name and all its non-private members are exposed
externally to the DLL or EXE.

A class declaration is defined:

 ClassDeclaration:
 class Identifier [SuperClass {, InterfaceClass }] ClassBody

 SuperClass:
 : Identifier

 InterfaceClass:
 Identifier

 ClassBody:
 { Declarations }

Classes consist of:
super class
interfaces
dynamic fields
static fields
types
functions
static functions
dynamic functions
constructors
destructors
static constructors
static destructors
invariants
unit tests
allocators
deallocators
A class is defined:
 class Foo
 {
 ... members ...
 }

Note that there is no trailing ; after the closing } of the class definition. It is also not possible
to declare a variable var like:

The D Programming Language

 87

 class Foo { } var;

Instead:
 class Foo { }
 Foo var;

Fields
Class members are always accessed with the . operator. There are no :: or -> operators as in
C++.

The D compiler is free to rearrange the order of fields in a class to optimally pack them in an
implementation-defined manner. Hence, alignment statements, anonymous structs, and
anonymous unions are not allowed in classes because they are data layout mechanisms.
Consider the fields much like the local variables in a function - the compiler assigns some to
registers and shuffles others around all to get the optimal stack frame layout. This frees the
code designer to organize the fields in a manner that makes the code more readable rather
than being forced to organize it according to machine optimization rules. Explicit control of
field layout is provided by struct/union types, not classes.

In C++, it is common practice to define a field, along with "object-oriented" get and set
functions for it:

 class Abc
 { int property;
 void setProperty(int newproperty) { property = newproperty;
}
 int getProperty() { return property; }
 };

 Abc a;
 a.setProperty(3);
 int x = a.getProperty();

All this is quite a bit of typing, and it tends to make code unreadable by filling it with
getProperty() and setProperty() calls. In D, get'ers and set'ers take advantage of the idea that
an lvalue is a set'er, and an rvalue is a get'er:
 class Abc
 { int myprop;
 void property(int newproperty) { myprop = newproperty; } //
set'er
 int property() { return myprop; } // get'er
 }

which is used as:
 Abc a;
 a.property = 3; // equivalent to a.property(3)
 int x = a.property; // equivalent to int x = a.property()

Thus, in D you can treat a property like it was a simple field name. A property can start out
actually being a simple field name, but if later if becomes necessary to make getting and
setting it function calls, no code needs to be modified other than the class definition.

Super Class
All classes inherit from a super class. If one is not specified, it inherits from Object. Object
forms the root of the D class inheritance heirarchy.

The D Programming Language

 88

Constructors
Members are always initialized to the default initializer for their type, which is usually 0 for
integer types and NAN for floating point types. This eliminates an entire class of obscure
problems that come from neglecting to initialize a member in one of the constructors. In the
class definition, there can be a static initializer to be used instead of the default:
 class Abc
 {
 int a; // default initializer for a is 0
 long b = 7; // default initializer for b is 7
 float f; // default initializer for f is NAN
 }

This static initialization is done before any constructors are called.

Constructors are defined with a function name of this and having no return value:

 class Foo
 {
 this(int x) // declare constructor for Foo
 { ...
 }
 this()
 { ...
 }
 }

Base class construction is done by calling the base class constructor by the name super:
 class A { this(int y) { } }

 class B : A
 {
 int j;
 this()
 {
 ...
 super(3); // call base constructor A.this(3)
 ...
 }
 }

Constructors can also call other constructors for the same class in order to share common
initializations:
 class C
 {
 int j;
 this()
 {
 ...
 }
 this(int i)
 {
 this();
 j = 3;
 }
 }

If no call to constructors via this or super appear in a constructor, and the base class has a
constructor, a call to super() is inserted at the beginning of the constructor.

The D Programming Language

 89

If there is no constructor for a class, but there is a constructor for the base class, a default
constructor of the form:

 this() { }

is implicitly generated.

Class object construction is very flexible, but some restrictions apply:

1. It is illegal for constructors to mutually call each other:
2. this() { this(1); }
3. this(int i) { this(); } // illegal, cyclic

constructor calls

4. If any constructor call appears inside a constructor, any path through the constructor
must make exactly one constructor call:

5. this() { a || super(); } // illegal
6.
7. this() { this(1) || super(); } // ok
8.
9. this()
10. {
11. for (...)
12. {
13. super(); // illegal, inside loop
14. }
15. }

16. It is illegal to refer to this implicitly or explicitly prior to making a constructor call.
17. Constructor calls cannot appear after labels (in order to make it easy to check for the

previous conditions in the presence of goto's).

Instances of class objects are created with NewExpressions:
 A a = new A(3);

The following steps happen:

1. Storage is allocated for the object. If this fails, rather than return null, an
OutOfMemoryException is thrown. Thus, tedious checks for null references are
unnecessary.

2. The raw data is statically initialized using the values provided in the class definition.
The pointer to the vtbl is assigned. This ensures that constructors are passed fully
formed objects. This operation is equivalent to doing a memcpy() of a static version of
the object onto the newly allocated one, although more advanced compilers may be
able to optimize much of this away.

3. If there is a constructor defined for the class, the constructor matching the argument
list is called.

4. If class invariant checking is turned on, the class invariant is called at the end of the
constructor.

Destructors
The garbage collector calls the destructor function when the object is deleted. The syntax is:
 class Foo

The D Programming Language

 90

 {
 ~this() // destructor for Foo
 {
 }
 }

There can be only one destructor per class, the destructor does not have any parameters, and
has no attributes. It is always virtual.

The destructor is expected to release any resources held by the object.

The program can explicitly inform the garbage collector that an object is no longer referred to
(with the delete expression), and then the garbage collector calls the destructor immediately,
and adds the object's memory to the free storage. The destructor is guaranteed to never be
called twice.

The destructor for the super class automatically gets called when the destructor ends. There is
no way to call the super destructor explicitly.

Static Constructors
A static constructor is defined as a function that performs initializations before the main()
function gets control. Static constructors are used to initialize static class members with
values that cannot be computed at compile time.

Static constructors in other languages are built implicitly by using member initializers that
can't be computed at compile time. The trouble with this stems from not having good control
over exactly when the code is executed, for example:

 class Foo
 {
 static int a = b + 1;
 static int b = a * 2;
 }

What values do a and b end up with, what order are the initializations executed in, what are
the values of a and b before the initializations are run, is this a compile error, or is this a
runtime error? Additional confusion comes from it not being obvious if an initializer is static
or dynamic.

D makes this simple. All member initializations must be determinable by the compiler at
compile time, hence there is no order-of-evaluation dependency for member initializations,
and it is not possible to read a value that has not been initialized. Dynamic initialization is
performed by a static constructor, defined with a special syntax static this().

 class Foo
 {
 static int a; // default initialized to 0
 static int b = 1;
 static int c = b + a; // error, not a constant initializer

 static this() // static constructor
 {
 a = b + 1; // a is set to 2
 b = a * 2; // b is set to 4
 }

The D Programming Language

 91

 }

static this() is called by the startup code before main() is called. If it returns normally
(does not throw an exception), the static destructor is added to the list of function to be called
on program termination. Static constructors have empty parameter lists.

A current weakness of the static constructors is that the order in which they are called is not
defined. Hence, for the time being, write the static constructors to be order independent. This
problem needs to be addressed in future versions.

Static Destructor
A static destructor is defined as a special static function with the syntax static ~this().
 class Foo
 {
 static ~this() // static destructor
 {
 }
 }

A static constructor gets called on program termination, but only if the static constructor
completed successfully. Static destructors have empty parameter lists. Static destructors get
called in the reverse order that the static constructors were called in.

Class Invariants
Class invariants are used to specify characteristics of a class that always must be true (except
while executing a member function). For example, a class representing a date might have an
invariant that the day must be 1..31 and the hour must be 0..23:
 class Date
 {
 int day;
 int hour;

 invariant()
 {
 assert(1 <= day && day <= 31);
 assert(0 <= hour && hour < 24);
 }
 }

The class invariant is a contract saying that the asserts must hold true. The invariant is
checked when a class constructor completes, at the start of the class destructor, before a public
or exported member is run, and after a public or exported function finishes. The invariant can
be checked when a class object is the argument to an assert() expression, as:
 Date mydate;
 ...
 assert(mydate); // check that class Date invariant holds

If the invariant fails, it throws an InvariantException. Class invariants are inherited, that is,
any class invariant is implicitly anded with the invariants of its base classes.

There can be only one invariant() function per class.

When compiling for release, the invariant code is not generated, and the compiled program
runs at maximum speed.

The D Programming Language

 92

Unit Tests
Unit tests are a series of test cases applied to a class to determine if it is working properly.
Ideally, unit tests should be run every time a program is compiled. The best way to make sure
that unit tests do get run, and that they are maintained along with the class code is to put the
test code right in with the class implementation code.

D classes can have a special member function called:

 unittest
 {
 ...test code...
 }

The test() functions for all the classes in the program get called after static initialization is
done and before the main function is called. A compiler or linker switch will remove the test
code from the final build.

For example, given a class Sum that is used to add two values:

 class Sum
 {
 int add(int x, int y) { return x + y; }

 unittest
 {
 assert(add(3,4) == 7);
 assert(add(-2,0) == -2);
 }
 }

There can be only one unittest function per class.

Class Allocators
A class member function of the form:
 new(uint size)
 {
 ...
 }

is called a class allocator. The class allocator can have any number of parameters, provided
the first one is of type uint. Any number can be defined for a class, the correct one is
determined by the usual function overloading rules. When a new expression:
 new Foo;

is executed, and Foo is a class that has an allocator, the allocator is called with the first
argument set to the size in bytes of the memory to be allocated for the instance. The allocator
must allocate the memory and return it as a void*. If the allocator fails, it must not return a
null, but must throw an exception. If there is more than one parameter to the allocator, the
additional arguments are specified within parentheses after the new in the NewExpression:
 class Foo
 {
 this(char[] a) { ... }

 new(uint size, int x, int y)
 {
 ...

The D Programming Language

 93

 }
 }

 ...

 new(1,2) Foo(a); // calls new(Foo.size,1,2)

Derived classes inherit any allocator from their base class, if one is not specified.

See also Explicit Class Instance Allocation.

Class Deallocators
A class member function of the form:
 delete(void *p)
 {
 ...
 }

is called a class deallocator. The deallocator must have exactly one parameter of type void*.
Only one can be specified for a class. When a delete expression:
 delete f;

is executed, and f is a reference to a class instance that has a deallocator, the deallocator is
called with a pointer to the class instance after the destructor (if any) for the class is called. It
is the responsibility of the deallocator to free the memory.

Derived classes inherit any deallocator from their base class, if one is not specified.

See also Explicit Class Instance Allocation.

Auto Classes
An auto class is a class with the auto attribute, as in:
 auto class Foo { ... }

The auto characteristic is inherited, so if any classes derived from an auto class are also auto.

An auto class reference can only appear as a function local variable. It must be declared as
being auto:

 auto class Foo { ... }

 void func()
 {
 Foo f; // error, reference to auto class must be auto
 auto Foo g = new Foo(); // correct
 }

When an auto class reference goes out of scope, the destructor (if any) for it is automatically
called. This holds true even if the scope was exited via a thrown exception.

Interfaces
 InterfaceDeclaration:

The D Programming Language

 94

 interface Identifier InterfaceBody
 interface Identifier : SuperInterfaces InterfaceBody

 SuperInterfaces
 Identifier
 Identifier , SuperInterfaces

 InterfaceBody:
 { DeclDefs }

Interfaces describe a list of functions that a class that inherits from the interface must
implement. A class that implements an interface can be converted to a reference to that
interface. Interfaces correspond to the interface exposed by operating system objects, like
COM/OLE/ActiveX for Win32.

Interfaces cannot derive from classes; only from other interfaces. Classes cannot derive from
an interface multiple times.

 interface D
 {
 void foo();
 }

 class A : D, D // error, duplicate interface
 {
 }

An instance of an interface cannot be created.
 interface D
 {
 void foo();
 }

 ...

 D d = new D(); // error, cannot create instance of interface

Interface member functions do not have implementations.
 interface D
 {
 void bar() { } // error, implementation not allowed
 }

All interface functions must be defined in a class that inherits from that interface:
 interface D
 {
 void foo();
 }

 class A : D
 {
 void foo() { } // ok, provides implementation
 }

 class B : D
 {
 int foo() { } // error, no void foo() implementation
 }

Interfaces can be inherited and functions overridden:

The D Programming Language

 95

 interface D
 {
 int foo();
 }

 class A : D
 {
 int foo() { return 1; }
 }

 class B : A
 {
 int foo() { return 2; }
 }

 ...

 B b = new B();
 b.foo(); // returns 2
 D d = (D) b; // ok since B inherits A's D implementation
 d.foo(); // returns 2;

Interfaces can be reimplemented in derived classes:
 interface D
 {
 int foo();
 }

 class A : D
 {
 int foo() { return 1; }
 }

 class B : A, D
 {
 int foo() { return 2; }
 }

 ...

 B b = new B();
 b.foo(); // returns 2
 D d = (D) b;
 d.foo(); // returns 2
 A a = (A) b;
 D d2 = (D) a;
 d2.foo(); // returns 2, even though it is A's D, not
B's D

The D Programming Language

 96

A reimplemented interface must implement all the interface functions, it does not inherit them
from a super class:
 interface D
 {
 int foo();
 }

 class A : D
 {
 int foo() { return 1; }
 }

 class B : A, D
 {
 } // error, no foo() for interface D

The D Programming Language

 97

Functions
Virtual Functions
All non-static member functions are virtual. This may sound inefficient, but since the D
compiler knows all of the class heirarchy when generating code, all functions that are not
overridden can be optimized to be non-virtual. In fact, since C++ programmers tend to "when
in doubt, make it virtual", the D way of "make it virtual unless we can prove it can be made
non-virtual" results on average much more direct function calls. It also results in fewer bugs
caused by not declaring a function virtual that gets overridden.

Functions with non-D linkage cannot be virtual, and hence cannot be overridden.

Covariant return types are supported, which means that the overriding function in a derived
class can return a type that is derived from the type returned by the overridden function:

 class A { }
 class B : A { }

 class Foo
 {
 A test() { return null; }
 }

 class Bar : Foo
 {
 B test() { return null; } // overrides and is covariant with
Foo.test()
 }

Inline Functions
There is no inline keyword. The compiler makes the decision whether to inline a function or
not, analogously to the register keyword no longer being relevant to a compiler's decisions on
enregistering variables. (There is no register keyword either.)

Function Overloading
In C++, there are many complex levels of function overloading, with some defined as "better"
matches than others. If the code designer takes advantage of the more subtle behaviors of
overload function selection, the code can become difficult to maintain. Not only will it take a
C++ expert to understand why one function is selected over another, but different C++
compilers can implement this tricky feature differently, producing subtly disastrous results.

In D, function overloading is simple. It matches exactly, it matches with implicit conversions,
or it does not match. If there is more than one match, it is an error.

Functions defined with non-D linkage cannot be overloaded.

Function Parameters
Parameters are in, out, or inout. in is the default; out and inout work like storage classes. For
example:
 int foo(int x, out int y, inout int z, int q);

The D Programming Language

 98

x is in, y is out, z is inout, and q is in.

out is rare enough, and inout even rarer, to attach the keywords to them and leave in as the
default. The reasons to have them are:

• The function declaration makes it clear what the inputs and outputs to the function are.
• It eliminates the need for IDL as a separate language.
• It provides more information to the compiler, enabling more error checking and

possibly better code generation.
• It (perhaps?) eliminates the need for reference (&) declarations.

out parameters are set to the default initializer for the type of it. For example:
 void foo(out int bar)
 {
 }

 int bar = 3;
 foo(bar);
 // bar is now 0

Local Variables
It is an error to use a local variable without first assigning it a value. The implementation may
not always be able to detect these cases. Other language compilers sometimes issue a warning
for this, but since it is always a bug, it should be an error.

It is an error to declare a local variable that is never referred to. Dead variables, like
anachronistic dead code, is just a source of confusion for maintenance programmers.

It is an error to declare a local variable that hides another local variable in the same function:

 void func(int x)
 { int x; error, hides previous definition of x
 double y;
 ...
 { char y; error, hides previous definition of y
 int z;
 }
 { wchar z; legal, previous z is out of scope
 }
 }

While this might look unreasonable, in practice whenever this is done it either is a bug or at
least looks like a bug.

It is an error to return the address of or a reference to a local variable.

It is an error to have a local variable and a label with the same name.

Nested Functions
Functions may be nested within other functions:
 int bar(int a)
 {
 int foo(int b)

The D Programming Language

 99

 {
 int abc() { return 1; }

 return b + abc();
 }
 return foo(a);
 }

 void test()
 {
 int i = bar(3); // i is assigned 4
 }

Nested functions can only be accessed by the most nested lexically enclosing function, or by
another nested function at the same nesting depth:
 int bar(int a)
 {
 int foo(int b) { return b + 1; }
 int abc(int b) { return foo(b); } // ok
 return foo(a);
 }

 void test()
 {
 int i = bar(3); // ok
 int j = bar.foo(3); // error, bar.foo not visible
 }

Nested functions have access to the variables and other symbols defined by the lexically
enclosing function. This access includes both the ability to read and write them.
 int bar(int a)
 { int c = 3;

 int foo(int b)
 {
 b += c; // 4 is added to b
 c++; // bar.c is now 5
 return b + c; // 12 is returned
 }
 c = 4;
 int i = foo(a); // i is set to 12
 return i + c; // returns 17
 }

 void test()
 {
 int i = bar(3); // i is assigned 17
 }

This access can span multiple nesting levels:
 int bar(int a)
 { int c = 3;

 int foo(int b)
 {
 int abc()
 {
 return c; // access bar.c
 }
 return b + c + abc();
 }

The D Programming Language

 100

 return foo(3);
 }

Static nested functions cannot access any stack variables of any lexically enclosing function,
but can access static variables. This is analogous to how static member functions behave.
 int bar(int a)
 { int c;
 static int d;

 static int foo(int b)
 {
 b = d; // ok
 b = c; // error, foo() cannot access frame of bar()
 return b + 1;
 }
 return foo(a);
 }

Functions can be nested within member functions:
 struct Foo
 { int a;

 int bar()
 { int c;

 int foo()
 {
 return c + a;
 }
 }
 }

Member functions of nested classes and structs do not have access to the stack variables of the
enclosing function, but do have access to the other symbols:
 void test()
 { int j;
 static int s;

 struct Foo
 { int a;

 int bar()
 { int c = s; // ok, s is static
 int d = j; // error, no access to frame of
test()

 int foo()
 {
 int e = s; // ok, s is static
 int f = j; // error, no access to frame of
test()
 return c + a; // ok, frame of bar() is accessible,
 // so are members of Foo accessible
via
 // the 'this' pointer to Foo.bar()
 }
 }
 }
 }

The D Programming Language

 101

Delegates, Function Pointers, and Dynamic Closures
A function pointer can point to a static nested function:
 int function() fp;

 void test()
 { static int a = 7;
 static int foo() { return a + 3; }

 fp = foo;
 }

 void bar()
 {
 test();
 int i = fp(); // i is set to 10
 }

A delegate can be set to a non-static nested function:
 int delegate() dg;

 void test()
 { int a = 7;
 int foo() { return a + 3; }

 dg = foo;
 int i = dg(); // i is set to 10
 }

The stack variables, however, are not valid once the function declaring them has exited, in the
same manner that pointers to stack variables are not valid upon exit from a function:
 int* bar()
 { int b;
 test();
 int i = dg(); // error, test.a no longer exists
 return &b; // error, bar.b not valid after bar() exits
 }

Delegates to non-static nested functions contain two pieces of data: the pointer to the stack
frame of the lexically enclosing function (called the frame pointer) and the address of the
function. This is analogous to struct/class non-static member function delegates consisting of
a this pointer and the address of the member function. Both forms of delegates are
interchangeable, and are actually the same type:
 struct Foo
 { int a = 7;
 int bar() { return a; }
 }

 int foo(int delegate() dg)
 {
 return dg() + 1;
 }

 void test()
 {
 int x = 27;
 int abc() { return x; }
 Foo f;
 int i;

 i = foo(abc); // i is set to 28

The D Programming Language

 102

 i = foo(f.bar); // i is set to 8
 }

This combining of the environment and the function is called a dynamic closure.

The D Programming Language

 103

Operator Overloading
Overloading is accomplished by interpreting specially named member functions as being
implementations of unary and binary operators. No additional syntax is used.

Unary Operator Overloading

Overloadable Unary Operators
op opfunc

- neg

~ com

e++ postinc

e-- postdec

Given a unary overloadable operator op and its corresponding class or struct member function
name opfunc, the syntax:

 op a

where a is a class or struct object reference, is interpreted as if it was written as:
 a.opfunc()

Overloading ++e and --e
Since ++e is defined to be semantically equivalent to (e += 1), the expression ++e is rewritten
as (e += 1), and then checking for operator overloading is done. The situation is analogous for
--e.

Examples
1. class A { int neg(); }
2. A a;
3. -a; // equivalent to a.neg();
4.
5. class A { int neg(int i); }
6. A a;
7. -a; // equivalent to a.neg(), which is an error
8.

Binary Operator Overloading

Overloadable Binary Operators
op commutative? opfunc opfunc_r

+ yes add -

- no sub sub_r

* yes mul -

The D Programming Language

 104

/ no div div_r

% no mod mod_r

& yes and -

| yes or -

^ yes xor -

<< no shl shl_r

>> no shr shr_r

>>> no ushr ushr_r

~ no cat cat_r

== yes eq -

!= yes eq -

< yes cmp -

<= yes cmp -

> yes cmp -

>= yes cmp -

+= no addass -

-= no subass -

*= no mulass -

/= no divass -

%= no modass -

&= no andass -

|= no orass -

^= no xorass -

<<= no shlass -

>>= no shrass -

>>>= no ushrass -

~= no catass -

Given a binary overloadable operator op and its corresponding class or struct member
function name opfunc and opfunc_r, the syntax:

 a op b

is interpreted as if it was written as:

The D Programming Language

 105

 a.opfunc(b)

or:
 b.opfunc_r(a)

The following sequence of rules is applied, in order, to determine which form is used:

1. If a is a struct or class object reference that contains a member named opfunc, the
expression is rewritten as:

2. a.opfunc(b)

3. If b is a struct or class object reference that contains a member named opfunc_r and
the operator op is not commutative, the expression is rewritten as:

4. b.opfunc_r(a)

5. If b is a struct or class object reference that contains a member named opfunc and the
operator op is commutative, the expression is rewritten as:

6. b.opfunc(a)

7. If a or b is a struct or class object reference, it is an error.

Examples
1. class A { int add(int i); }
2. A a;
3. a + 1; // equivalent to a.add(1)
4.
5. 1 + a; // equivalent to a.add(1)
6.
7. class B { int div_r(int i); }
8. B b;
9. 1 / b; // equivalent to b.div_r(1)
10.

Overloading == and !=
Both operators use the eq() function. The expression (a == b) is rewritten as a.eq(b), and
(a != b) is rewritten as !a.eq(b).

The member function eq() is defined as part of Object as:

 int eq(Object o);

so that every class object has an eq().

If a struct has no eq() function declared for it, a bit compare of the contents of the two structs
is done to determine equality or inequality.

Overloading <, <=, > and >=
These comparison operators all use the cmp() function. The expression (a op b) is rewritten
as (a.cmp(b) op 0). The commutative operation is rewritten as (0 op b.cmp(a))

The member function cmp() is defined as part of Object as:

The D Programming Language

 106

 int cmp(Object o);

so that every class object has a cmp().

If a struct has no cmp() function declared for it, attempting to compare two structs is an error.

Note: Comparing a reference to a class object against null should be done as:

 if (a === null)

and not as:
 if (a == null)

The latter is converted to:
 if (a.cmp(null))

which will fail if cmp is a virtual function.

Rationale
The reason for having both eq() and cmp() is that:

• Testing for equality can sometimes be a much more efficient operation than testing for
less or greater than.

• For some objects, testing for less or greater makes no sense. For these, override cmp()
with:

• class A
• {
• int cmp(Object o)
• {
• assert(0); // comparison makes no sense
• return 0;
• }
• }

Future Directions
Likely many more operators will become overloadable. But the operators ., &&, ||, ?:, and a

The D Programming Language

 107

Templates
Templates are D's approach to generic programming. Templates are defined with a
TemplateDeclaration:
 TemplateDeclaration:
 template TemplateIdentifier (TemplateParameterList)
 { DeclDefs }

 TemplateIdentifier:
 Identifier

 TemplateParameterList
 TemplateParameter
 TemplateParameter , TemplateParameterList

 TemplateParameter:
 TypeParameter
 ValueParameter

 TypeParameter:
 Identifier
 Identifier : Type

 ValueParameter:
 Declaration
 Declaration : AssignExpression

The body of the TemplateDeclaration must be syntactically correct even if never instantiated.
Semantic analysis is not done until instantiated. A template forms its own scope, and the
template body can contain classes, structs, types, enums, variables, functions, and other
templates.

Template parameters can be either types or values. Value parameters must be of an integral
type, and specializations for them must resolve to an integral constant.

Templates are instantiated with:

 TemplateInstance:
 instance TemplateIdentifer (TemplateArgumentList)

 TemplateAliasDeclaration:
 TemplateInstance AliasIdentifier;

 AliasIdentifier:
 Identifier

 TemplateArgumentList:
 TemplateArgument
 TemplateArgument , TemplateArgumentList

 TemplateArgument:
 Type
 AssignExpression

Once instantiated, the declarations inside the template, called the template members, are in the
scope of the AliasIdentifier:
 template TFoo(T) { alias T* t; }

The D Programming Language

 108

 instance TFoo(int) abc;
 ...
 abc.t x; // declare x to be of type int

Template members can also be accessed directly from the TemplateInstance:
 template TFoo(T) { alias T* t; }
 instance TFoo(int).t x; // declare x to be of type int

Multiple instantiations of a TemplateDeclaration with the same TemplateParameterList all
will refer to the same instantiation. For example:
 template TFoo(T) { T f; }
 instance TFoo(int) a;
 instance TFoo(int) b;
 ...
 a.f = 3;
 assert(b.f == 3); // a and b refer to the same instance of TFoo

This is true even if the TemplateInstances are done in different modules.

If multiple templates with the same TemplateIdentifier are declared, they are distinct if they
have a different number of arguments or are differently specialized.

For example, a simple generic copy template would be:

 template TCopy(T)
 {
 void copy(out T to, T from)
 {
 to = from;
 }
 }

To use the template, it must first be instantiated with a specific type:
 instance TCopy(int) copyint;

And then the instance can be called:
 int i;
 copyint.copy(i, 3);

Instantiation Scope
TemplateInstantances are always performed in the scope of where the TemplateDeclaration is
declared, with the addition of the template parameters being declared as aliases for their
deduced types.

For example:

 -------- module a ---------
 template TFoo(T) { void bar() { func(); } }

 -------- module b ---------
 import a;

 void func() { }
 instance TFoo(int) f; // error: func not defined in module a

and:
 -------- module a ---------

The D Programming Language

 109

 template TFoo(T) { void bar() { func(1); } }
 void func(double d) { }

 -------- module b ---------
 import a;

 void func(int i) { }
 instance TFoo(int) f;
 ...
 f.bar(); // will call a.func(double)

Argument Deduction
The types of template parameters are deduced for a particular template instantiation by
comparing the template argument with the corresponding template parameter.

For each template parameter, the following rules are applied in order until a type is deduced
for each parameter:

1. If there is no type specialization for the parameter, the type of the parameter is set to
the template argument.

2. If the type specialization is dependent on a type parameter, the type of that parameter
is set to be the corresponding part of the type argument.

3. If after all the type arguments are examined there are any type parameters left with no
type assigned, they are assigned types corresponding to the template argument in the
same position in the TemplateArgumentList.

4. If applying the above rules does not result in exactly one type for each template
parameter, then it is an error.

For example:
 template TFoo(T) { }
 instance TFoo(int) Foo1; // (1) T is deduced to be int
 instance TFoo(char*) Foo2; // (1) T is deduced to be char*

 template TFoo(T : T*) { }
 instance TFoo(char*) Foo3; // (2) T is deduced to be char

 template TBar(D, U : D[]) { }
 instance TBar(int, int[]) Bar1; // (2) D is deduced to be
int, U is int[]
 instance TBar(char, int[]) Bar2; // (4) error, D is both char and
int

 template TBar(D : E*, E) { }
 instance TBar(int*, int); // (1) E is int
 // (3) D is int*

When considering matches, a class is considered to be a match for any super classes or
interfaces:
 class A { }
 class B : A { }

 template TFoo(T : A) { }
 instance TFoo(B); // (3) T is B

 template TBar(T : U*, U : A) { }
 instance TBar(B*, B); // (2) T is B*
 // (3) U is B

The D Programming Language

 110

Value Parameters
This example of template foo has a value parameter that is specialized for 10:
 template foo(U : int, int T : 10)
 {
 U x = T;
 }

 void main()
 {
 assert(instance foo(int, 10).x == 10);
 }

Specialization
Templates may be specialized for particular types of arguments by following the template
parameter identifier with a : and the specialized type. For example:
 template TFoo(T) { ... } // #1
 template TFoo(T : T[]) { ... } // #2
 template TFoo(T : char) { ... } // #3
 template TFoo(T,U,V) { ... } // #4

 instance TFoo(int) foo1; // instantiates #1
 instance TFoo(double[]) foo2; // instantiates #2 with T being
double
 instance TFoo(char) foo3; // instantiates #3
 instance TFoo(char, int) fooe; // error, number of arguments
mismatch
 instance TFoo(char, int, int) foo4; // instantiates #4

The template picked to instantiate is the one that is most specialized that fits the types of the
TemplateArgumentList. Determine which is more specialized is done the same way as the
C++ partial ordering rules. If the result is ambiguous, it is an error.

Limitations
Templates cannot be used to add non-static members or functions to classes. For example:
 class Foo
 {
 template TBar(T)
 {
 T xx; // Error
 int func(T) { ... } // Error

 static T yy; // Ok
 static int func(T t, int y) { ... } // Ok
 }
 }

Templates cannot be declared inside functions.

The D Programming Language

 111

Contracts
Contracts are a breakthrough technique to reduce the programming effort for large projects.
Contracts are the concept of preconditions, postconditions, errors, and invariants. Contracts
can be done in C++ without modification to the language, but the result is clumsy and
inconsistent.

Building contract support into the language makes for:

1. a consistent look and feel for the contracts
2. tool support
3. it's possible the compiler can generate better code using information gathered from the

contracts
4. easier management and enforcement of contracts
5. handling of contract inheritance

The idea of a contract is simple - it's just an expression that must evaluate to true. If it does
not, the contract is broken, and by definition, the program has a bug in it. Contracts form part
of the specification for a program, moving it from the documentation to the code itself. And
as every programmer knows, documentation tends to be incomplete, out of date, wrong, or
non-existent. Moving the contracts into the code makes them verifiable against the program.

Assert Contract
The most basic contract is the assert. An assert inserts a checkable expression into the code,
and that expression must evaluate to true:
 assert(expression);

C programmers will find it familiar. Unlike C, however, an assert in function bodies works
by throwing an AssertException, which can be caught and handled. Catching the contract
violation is useful when the code must deal with errant uses by other code, when it must be
failure proof, and as a useful tool for debugging.

Pre and Post Contracts
The pre contracts specify the preconditions before a statement is executed. The most typical
use of this would be in validating the parameters to a function. The post contracts validate the
result of the statement. The most typical use of this would be in validating the return value of
a function and of any side effects it has. The syntax is:
 in
 {

The D Programming Language

 112

 ...contract preconditions...
 }
 out (result)
 {
 ...contract postconditions...
 }
 body
 {
 ...code...
 }

By definition, if a pre contract fails, then the body received bad parameters. An InException is
thrown. If a post contract fails, then there is a bug in the body. An OutException is thrown.

Either the in or the out clause can be omitted. If the out clause is for a function body, the
variable result is declared and assigned the return value of the function. For example, let's
implement a square root function:

 long square_root(long x)
 in
 {
 assert(x >= 0);
 }
 out (result)
 {
 assert((result * result) == x);
 }
 body
 {
 return math.sqrt(x);
 }

The assert's in the in and out bodies are called contracts. Any other D statement or expression
is allowed in the bodies, but it is important to ensure that the code has no side effects, and that
the release version of the code will not depend on any effects of the code. For a release build
of the code, the in and out code is not inserted.

If the function returns a void, there is no result, and so there can be no result declaration in the
out clause. In that case, use:

 void func()
 out
 {
 ...contracts...
 }
 body
 {
 ...
 }

In an out statement, result is initialized and set to the return value of the function.

The compiler can be adjusted to verify that every in and inout parameter is referenced in the
in { }, and every out and inout parameter is referenced in the out { }.

The in-out statement can also be used inside a function, for example, it can be used to check
the results of a loop:

 in
 {

The D Programming Language

 113

 assert(j == 0);
 }
 out
 {
 assert(j == 10);
 }
 body
 {
 for (i = 0; i < 10; i++)
 j++;
 }

This is not implemented at this time.

In, Out and Inheritance
If a function in a derived class overrides a function in its super class, then only one of the in
contracts of the base functions must be satisified Overriding functions then becomes a process
of loosening the in contracts.

Conversely, all of the out contracts needs to be satisified, so overriding functions becomes a
processes of tightening the out contracts.

Class Invariants
Class invariants are used to specify characteristics of a class that always must be true (except
while executing a member function). They are described in Classes.

The D Programming Language

 114

Debug and Version
D supports building multiple versions and various debug builds from the same source code
using the features:
 DebugSpecification
 DebugAttribute
 DebugStatement

 VersionSpecification
 VersionAttribute
 VersionStatement

Predefined Versions
Several environmental version identifiers and identifier name spaces are predefined to
encourage consistent usage. Version identifiers do not conflict with other identifiers in the
code, they are in a separate name space.
DigitalMars

Digital Mars is the compiler vendor
X86

Intel and AMD 32 bit processors
Win32

Microsoft 32 bit Windows systems
linux

All linux systems
LittleEndian

Byte order, least significant first
BigEndian

Byte order, most significant first
D_InlineAsm

Inline assembler is implemented
none

Never defined; used to just disable a section of code
Others will be added as they make sense and new implementations appear.

It is inevitable that the D language will evolve over time. Therefore, the version identifier
namespace beginning with "D_" is reserved for identifiers indicating D language specification
or new feature conformance.

Compiler vendor specific versions can be predefined if the trademarked vendor identifier
prefixes it, as in:

 version(DigitalMars_funky_extension)
 {
 ...
 }

It is important to use the right version identifier for the right purpose. For example, use the
vendor identifier when using a vendor specific feature. Use the operating system identifier
when using an operating system specific feature, etc.

The D Programming Language

 115

Specification
 DebugSpecification
 debug = Identifier ;
 debug = Integer ;

 VersionSpecification
 version = Identifier ;
 version = Integer ;

Version specifications do not declare any symbols, but instead set a version in the same
manner that the -version does on the command line. The version specification is used for
conditional compilation with version attributes and version statements.

The version specification makes it straightforward to group a set of features under one major
version, for example:

 version (ProfessionalEdition)
 {
 version = FeatureA;
 version = FeatureB;
 version = FeatureC;
 }
 version (HomeEdition)
 {
 version = FeatureA;
 }
 ...
 version (FeatureB)
 {
 ... implement Feature B ...
 }

Debug Statement
Two versions of programs are commonly built, a release build and a debug build. The debug
build commonly includes extra error checking code, test harnesses, pretty-printing code, etc.
The debug statement conditionally compiles in its statement body. It is D's way of what in C
is done with #ifdef DEBUG / #endif pairs.
 DebugStatement:
 debug Statement
 debug (Integer) Statement
 debug (Identifier) Statement

Debug statements are compiled in when the -debug switch is thrown on the compiler.

debug(Integer) statements are compiled in when the debug level n set by the -debug(n) switch
is <= Integer.

debug(Identifier) statements are compiled in when the debug identifier set by the -
debug(identifer) matches Identifier.

If Statement is a block statement, it does not introduce a new scope. For example:

 int k;
 debug
 { int i;

The D Programming Language

 116

 int k; // error, k already defined

 i = 3;
 }
 x = i; // uses the i declared above

There is no else clause for a debug statement, as debug statements should add code, not
subtract code.

Version Statement
It is commonplace to conveniently support multiple versions of a module with a single source
file. While the D way is to isolate all versioning into separate modules, that can get
burdensome if it's just simple line change, or if the entire program would otherwise fit into
one module.
 VersionStatement:
 VersionPredicate Statement
 VersionPredicate Statement else Statement

 VersionPredicate
 version (Integer)
 version (Identifier)

The version statement conditionally compiles in its statement body based on the version
specified by the Integer of Identifier. Both forms are set by the -version switch to the
compiler. If Statement is a block statement, it does not introduce a new scope. For example:
 int k;
 version (Demo) // compile in this code block for the demo version
 { int i;
 int k; // error, k already defined

 i = 3;
 }
 x = i; // uses the i declared above

The version statement works together with the version attribute for declarations.

Version statements can nest.

The optional else clause gets conditionally compiled in if the version predicate is false:

 version (X86)
 {
 ... // implement custom inline assembler version
 }
 else
 {
 ... // use default, but slow, version
 }

While the debug and version statements superficially behave the same, they are intended for
very different purposes. Debug statements are for adding debug code that is removed for the
release version. Version statements are to aid in portability and multiple release versions.

Debug Attribute
 DebugAttribute:
 debug
 debug (Integer)

The D Programming Language

 117

 debug (Identifier)

Two versions of programs are commonly built, a release build and a debug build. The debug
build includes extra error checking code, test harnesses, pretty-printing code, etc. The debug
attribute conditionally compiles in code:
 class Foo
 {
 int a, b;
 debug:
 int flag;
 }

Conditional Compilation means that if the code is not compiled in, it still must be
syntactically correct, but no semantic checking or processing is done on it. No symbols are
defined, no typechecking is done, no code is generated, no imports are imported. Various
different debug builds can be built with a parameter to debug:
 debug(n) { } // add in debug code if debug level is <= n
 debug(identifier) { } // add in debug code if debug keyword is
identifier

These are presumably set by the command line as -debug=n and -debug=identifier.

Version Attribute
 VersionAttribute:
 version (Integer)
 version (Identifier)

The version attribute is very similar to the debug attribute, and in many ways is functionally
interchangable with it. The purpose of it, however, is different. While debug is for building
debugging versions of a program, version is for using the same source to build multiple
release versions.

For instance, there may be a full version as opposed to a demo version:

 class Foo
 {
 int a, b;

 version(full)
 {
 int extrafunctionality()
 {
 ...
 return 1; // extra functionality is supported
 }
 }
 else // demo
 {
 int extrafunctionality()
 {
 return 0; // extra functionality is not
supported
 }
 }
 }

Various different version builds can be built with a parameter to version:
 version(n) { } // add in version code if version level is >= n

The D Programming Language

 118

 version(identifier) { } // add in version code if version keyword
is identifier

These are presumably set by the command line as -version=n and -version=identifier.

The D Programming Language

 119

Error Handling in D
All programs have to deal with errors. Errors are unexpected conditions that are not part of the
normal operation of a program. Examples of common errors are:

• Out of memory.
• Out of disk space.
• Invalid file name.
• Attempting to write to a read-only file.
• Attempting to read a non-existent file.
• Requesting a system service that is not supported.

The Error Handling Problem
The traditional C way of detecting and reporting errors is not traditional, it is ad-hoc and
varies from function to function, including:

• Returning a NULL pointer.
• Returning a 0 value.
• Returning a non-zero error code.
• Requiring errno to be checked.
• Requiring that a function be called to check if the previous function failed.

To deal with these possible errors, tedious error handling code must be added to each function
call. If an error happened, code must be written to recover from the error, and the error must
be reported to the user in some user friendly fashion. If an error cannot be handled locally, it
must be explicitly propagated back to its caller. The long list of errno values needs to be
converted into appropriate text to be displayed. Adding all the code to do this can consume a
large part of the time spent coding a project - and still, if a new errno value is added to the
runtime system, the old code can not properly display a meaningful error message.

Good error handling code tends to clutter up what otherwise would be a neat and clean
looking implementation.

Even worse, good error handling code is itself error prone, tends to be the least tested (and
therefore buggy) part of the project, and is frequently simply omitted. The end result is likely
a "blue screen of death" as the program failed to deal with some unanticipated error.

Quick and dirty programs are not worth writing tedious error handling code for, and so such
utilities tend to be like using a table saw with no blade guards.

What's needed is an error handling philosophy and methodology that is:

• Standardized - consistent usage makes it more useful.
• Produces a reasonable result even if the programmer fails to check for errors.
• Allows old code to be reused with new code without having to modify the old code to

be compatible with new error types.
• No errors get inadvertently ignored.
• Allows 'quick and dirty' utilities to be written that still correctly handle errors.
• Easy to make the error handling source code look good.

The D Programming Language

 120

The D Error Handling Solution
Let's first make some observations and assumptions about errors:

• Errors are not part of the normal flow of a program. Errors are exceptional, unusual,
and unexpected.

• Because errors are unusual, execution of error handling code is not performance
critical.

• The normal flow of program logic is performance critical.
• All errors must be dealt with in some way, either by code explicitly written to handle

them, or by some system default handling.
• The code that detects an error knows more about the error than the code that must

recover from the error.

The solution is to use exception handling to report errors. All errors are objects derived from
abstract class Error. class Error has a pure virtual function called toString() which produces a
char[] with a human readable description of the error.

If code detects an error like "out of memory," then an Error is thrown with a message saying
"Out of memory". The function call stack is unwound, looking for a handler for the Error.
Finally blocks are executed as the stack is unwound. If an error handler is found, execution
resumes there. If not, the default Error handler is run, which displays the message and
terminates the program.

How does this meet our criteria?

Standardized - consistent usage makes it more useful.
This is the D way, and is used consistently in the D runtime library and examples.

Produces a reasonable result even if the programmer fails to check for errors.
If no catch handlers are there for the errors, then the program gracefully exits through
the default error handler with an appropriate message.

Allows old code to be reused with new code without having to modify the old code to be
compatible with new error types.

Old code can decide to catch all errors, or only specific ones, propagating the rest
upwards. In any case, there is no more need to correlate error numbers with messages,
the correct message is always supplied.

No errors get inadvertently ignored.
Error exceptions get handled one way or another. There is nothing like a NULL
pointer return indicating an error, followed by trying to use that NULL pointer.

Allows 'quick and dirty' utilities to be written that still correctly handle errors.
Quick and dirty code need not write any error handling code at all, and don't need to
check for errors. The errors will be caught, an appropriate message displayed, and the
program gracefully shut down all by default.

Easy to make the error handling source code look good.
The try/catch/finally statements look a lot nicer than endless if (error) goto
errorhandler; statements.

How does this meet our assumptions about errors?
Errors are not part of the normal flow of a program. Errors are exceptional, unusual, and
unexpected.

D exception handling fits right in with that.
Because errors are unusual, execution of error handling code is not performance critical.

Exception handling stack unwinding is a relatively slow process.

The D Programming Language

 121

The normal flow of program logic is performance critical.
Since the normal flow code does not have to check every function call for error
returns, it can be realistically faster to use exception handling for the errors.

All errors must be dealt with in some way, either by code explicitly written to handle them, or
by some system default handling.

If there's no handler for a particular error, it is handled by the runtime library default
handler. If an error is ignored, it is because the programmer specifically added code to
ignore an error, which presumably means it was intentional.

The code that detects an error knows more about the error than the code that must recover
from the error.

There is no more need to translate error codes into human readable strings, the correct
string is generated by the error detection code, not the error recovery code. This also
leads to consistent error messages for the same error between applications.

The D Programming Language

 122

Garbage Collection
D is a fully garbage collected language. That means that it is never necessary to free memory.
Just allocate as needed, and the garbage collector will periodically return all unused memory
to the pool of available memory.

C and C++ programmers accustomed to explicitly managing memory allocation and
deallocation will likely be skeptical of the benefits and efficacy of garbage collection.
Experience both with new projects written with garbage collection in mind, and converting
existing projects to garbage collection shows that:

• Garbage collected programs are faster. This is counterintuitive, but the reasons are:
o Reference counting is a common solution to solve explicit memory allocation

problems. The code to implement the increment and decrement operations
whenever assignments are made is one source of slowdown. Hiding it behind
smart pointer classes doesn't help the speed. (Reference counting methods are
not a general solution anyway, as circular references never get deleted.)

o Destructors are used to deallocate resources acquired by an object. For most
classes, this resource is allocated memory. With garbage collection, most
destructors then become empty and can be discarded entirely.

o All those destructors freeing memory can become significant when objects are
allocated on the stack. For each one, some mechanism must be established so
that if an exception happens, the destructors all get called in each frame to
release any memory they hold. If the destructors become irrelevant, then
there's no need to set up special stack frames to handle exceptions, and the
code runs faster.

o All the code necessary to manage memory can add up to quite a bit. The larger
a program is, the less in the cache it is, the more paging it does, and the slower
it runs.

o Garbage collection kicks in only when memory gets tight. When memory is
not tight, the program runs at full speed and does not spend any time freeing
memory.

o Modern garbage collecters are far more advanced now than the older, slower
ones. Generational, copying collectors eliminate much of the inefficiency of
early mark and sweep algorithms.

o Modern garbage collectors do heap compaction. Heap compaction tends to
reduce the number of pages actively referenced by a program, which means
that memory accesses are more likely to be cache hits and less swapping.

o Garbage collected programs do not suffer from gradual deterioration due to an
accumulation of memory leaks.

• Garbage collectors reclaim unused memory, therefore they do not suffer from
"memory leaks" which can cause long running applications to gradually consume
more and more memory until they bring down the system. GC'd programs have longer
term stability.

• Garbage collected programs have fewer hard-to-find pointer bugs. This is because
there are no dangling references to free'd memory. There is no code to explicitly
manage memory, hence no bugs in such code.

• Garbage collected programs are faster to develop and debug, because there's no need
for developing, debugging, testing, or maintaining the explicit deallocation code.

The D Programming Language

 123

• Garbage collected programs can be significantly smaller, because there is no code to
manage deallocation, and there is no need for exception handlers to deallocate
memory.

Garbage collection is not a panacea. There are some downsides:

• It is not predictable when a collection gets run, so the program can arbitrarilly pause.
• The time it takes for a collection to run is not bounded. While in practice it is very

quick, this cannot be guaranteed.
• All threads other than the collector thread must be halted while the collection is in

progress.
• Garbage collectors can keep around some memory that an explicit deallocator would

not. In practice, this is not much of an issue since explicit deallocators usually have
memory leaks causing them to eventually use far more memory, and because explicit
deallocators do not normally return deallocated memory to the operating system
anyway, instead just returning it to its own internal pool.

• Garbage collection should be implemented as a basic operating system kernel service.
But since they are not, garbage collecting programs must carry around with them the
garbage collection implementation. While this can be a shared DLL, it is still there.

These constraints are addressed by techniques outlined in Memory Management.

How Garbage Collection Works
To be written...

Interfacing Garbage Collected Objects With Foreign Code
The garbage collector looks for roots in its static data segment, and the stacks and register
contents of each thread. If the only root of an object is held outside of this, then the collecter
will miss it and free the memory.

To avoid this from happening,

• Maintain a root to the object in an area the collector does scan for roots.
• Reallocate the object using the foreign code's storage allocator or using the C runtime

library's malloc/free.

Pointers and the Garbage Collector
The garbage collector's algorithms depend on pointers being pointers and not pointers being
not pointers. To that end, the following practices that are not unusual in C should be carefully
avoided in D:

• Do not hide pointers by xor'ing them with other values, like the xor'd pointer linked
list trick used in C. Do not use the xor trick to swap two pointer values.

• Do not store pointers into int variables using casts and other tricks. The garbage
collector does not scan non-pointer types for roots.

• Do not take advantage of alignment of pointers to store bit flags in the low order bits,
do not store bit flags in the high order bits.

• Do not store integer values into pointers.
• Do not store magic values into pointers, other than null.

The D Programming Language

 124

• If you must share the same storage location between pointers and non-pointer types,
use a union to do it so the garbage collector knows about it.

In fact, avoid using pointers at all as much as possible. D provides features rendering most
explicit pointer uses obsolete, such as reference objects, dynamic arrays, and garbage
collection. Pointers are provided in order to interface successfully with C API's and for some
wizard level work.

Working with the Garbage Collector
Garbage collection doesn't solve every memory deallocation problem. For example, if a root
to a large data structure is kept, the garbage collector cannot reclaim it, even if it is never
referred to again. To eliminate this problem, it is good practice to set a reference or pointer to
an object to null when no longer needed.

This advice applies only to static references or references embedded inside other objects.
There is not much point for such stored on the stack to be nulled, since the collector doesn't
scan for roots past the top of the stack, and because new stack frames are initialized anyway.

The D Programming Language

 125

Memory Management
Any non-trivial program needs to allocate and free memory. Memory management techniques
become more and more important as programs increase in complexity, size, and performance.
D offers many options for managing memory.

The three primary methods for allocating memory in D are:

1. Static data, allocated in the default data segment.
2. Stack data, allocated on the CPU program stack.
3. Garbage collected data, allocated dynamically on the garbage collection heap.

This chapter describes techniques for using them, as well as some advanced alternatives:

• Strings (and Array) Copy-on-Write
• Real Time
• Smooth Operation
• Free Lists
• Reference Counting
• Explicit Class Instance Allocation
• Mark/Release
• RAII (Resource Acquisition Is Initialization)
• Allocating Class Instances On The Stack

Strings (and Array) Copy-on-Write
Consider the case of passing an array to a function, possibly modifying the contents of the
array, and returning the modified array. Since arrays are passed by reference, not by value, a
crucial issue is who owns the contents of the array? For example, a function to convert an
array of characters to upper case:
 char[] toupper(char[] s)
 {
 int i;

 for (i = 0; i < s.length; i++)
 {
 char c = s[i];
 if ('a' <= c && c <= 'z')
 s[i] = c - (cast(char)'a' - 'A');
 }
 return s;
 }

Note that the caller's version of s[] is also modified. This may be not at all what was intended,
or worse, s[] may be a slice into a read-only section of memory.

If a copy of s[] was always made by toupper(), then that will unnecessarilly consume time and
memory for strings that are already all upper case.

The solution is to implement copy-on-write, which means that a copy is made only if the
string needs to be modified. Some string processing languages do do this as the default
behavior, but there is a huge cost to it. The string "abcdeF" will wind up being copied 5 times
by the function. To get the maximum efficiency using the protocol, it'll have to be done

The D Programming Language

 126

explicitly in the code. Here's toupper() rewritten to implement copy-on-write in an efficient
manner:

 char[] toupper(char[] s)
 {
 int changed;
 int i;

 changed = 0;
 for (i = 0; i < s.length; i++)
 {
 char c = s[i];
 if ('a' <= c && c <= 'z')
 {
 if (!changed)
 { char[] r = new char[s.length];
 r[] = s;
 s = r;
 changed = 1;
 }
 s[i] = c - (cast(char)'a' - 'A');
 }
 }
 return s;
 }

Copy-on-write is the protocol implemented by array processing functions in the D Phobos
runtime library.

Real Time
Real time programming means that a program must be able to guarantee a maximum latency,
or time to complete an operation. With most memory allocation schemes, including
malloc/free and garbage collection, the latency is theoretically not bound. The most reliable
way to guarantee latency is to preallocate all data that will be needed by the time critical
portion. If no calls to allocate memory are done, the gc will not run and so will not cause the
maximum latency to be exceeded.

Smooth Operation
Related to real time programming is the need for a program to operate smoothly, without
arbitrary pauses while the garbage collector stops everything to run a collection. An example
of such a program would be an interactive shooter type game. Having the game play pause
erratically, while not fatal to the program, can be annoying to the user. There are several
techniques to eliminate or mitigate the effect:
• Preallocate all data needed before the part of the code that needs to be smooth is run.
• Manually run a gc collection cycle at points in program execution where it is already
paused. An example of such a place would be where the program has just displayed a prompt
for user input and the user has not responded yet. This reduces the odds that a collection cycle
will be needed during the smooth code.
• Call gc.disable() before the smooth code is run, and gc.enable() afterwards. This will cause
the gc to favor allocating more memory instead of running a collection pass.

Free Lists
Free lists are a great way to accelerate access to a frequently allocated and discarded type. The
idea is simple - instead of deallocating an object when done with it, put it on a free list. When
allocating, pull one off the free list first.

The D Programming Language

 127

 class Foo
 {
 static Foo freelist; // start of free list

 static Foo allocate()
 { Foo f;

 if (freelist)
 { f = freelist;
 freelist = f.next;
 }
 else
 f = new Foo();
 return f;
 }

 static void deallocate(Foo f)
 {
 f.next = freelist;
 freelist = f;
 }

 Foo next; // for use by FooFreeList
 ...
 }

 void test()
 {
 Foo f = Foo.allocate();
 ...
 Foo.deallocate(f);
 }

Such free list approaches can be very high performance.

• If used by multiple threads, the allocate() and deallocate() functions need to be
synchronized.

• The Foo constructor is not re-run by allocate() when allocating from the free list, so
the allocator may need to reinitialize some of the members.

• It is not necessary to practice RIAA with this, since if any objects are not passed to
deallocate() when done, because of a thrown exception, they'll eventually get picked
up by the gc anyway.

Reference Counting
The idea behind reference counting is to include a count field in the object. Increment it for
each additional reference to it, and decrement it whenever a reference to it ceases. When the
count hits 0, the object can be deleted.

D doesn't provide any automated support for reference counting, it will have to be done
explicitly.

Win32 COM programming uses the members AddRef() and Release() to maintain the
reference counts.

Explicit Class Instance Allocation
D provides a means of creating custom allocators and deallocators for class instances.
Normally, these would be allocated on the garbage collected heap, and deallocated when the

The D Programming Language

 128

collector decides to run. For specialized purposes, this can be handled by creating
NewDeclarations and DeleteDeclarations. For example, to allocate using the C runtime
library's malloc and free:
 import c.stdlib;
 import outofmemory;
 import gc;

 class Foo
 {
 new(uint sz)
 {
 void* p;

 p = c.stdlib.malloc(sz);
 if (!p)
 throw new OutOfMemory();
 gc.addRange(p, p + sz);
 return p;
 }

 delete(void* p)
 {
 if (p)
 { gc.removeRange(p);
 c.stdlib.free(p);
 }
 }
 }

The critical features of new() are:

• new() does not have a return type specified, but it is defined to be void*. new() must
return a void*.

• If new() cannot allocate memory, it must not return null, but must throw an exception.
• The pointer returned from new() must be to memory aligned to the default alignment.

This is 8 on win32 systems.
• The size parameter is needed in case the allocator is called from a class derived from

Foo and is a larger size than Foo.
• A null is not returned if storage cannot be allocated. Instead, an exception is thrown.

Which exception gets thrown is up to the programmer, in this case, OutOfMemory()
is.

• When scanning memory for root pointers into the garbage collected heap, the static
data segment and the stack are scanned automatically. The C heap is not. Therefore, if
Foo or any class derived from Foo using the allocator contains any references to data
allocated by the garbage collector, the gc needs to be notified. This is done with the
gc.addRange() method.

• No initialization of the memory is necessary, as code is automatically inserted after the
call to new() to set the class instance members to their defaults and then the
constructor (if any) is run.

The critical features of delete() are:

• The destructor (if any) has already been called on the argument p, so the data it points
to should be assumed to be garbage.

• The pointer p may be null.
• If the gc was notified with gc.addRange(), a corresponding call to gc.removeRange()

must happen in the deallocator.

The D Programming Language

 129

• If there is a delete(), there should be a corresponding new().

If memory is allocated using class specific allocators and deallocators, careful coding
practices must be followed to avoid memory leaks and dangling references. In the presence of
exceptions, it is particularly important to practice RAII to prevent memory leaks.

Mark/Release
Mark/Release is equivalent to a stack method of allocating and freeing memory. A 'stack' is
created in memory. Objects are allocated by simply moving a pointer down the stack. Various
points are 'marked', and then whole sections of memory are released simply by resetting the
stack pointer back to a marked point.
 import c.stdlib;
 import outofmemory;

 class Foo
 {
 static void[] buffer;
 static int bufindex;
 static const int bufsize = 100;

 static this()
 { void *p;

 p = malloc(bufsize);
 if (!p)
 throw new OutOfMemory;
 gc.addRange(p, p + bufsize);
 buffer = p[0 .. bufsize];
 }

 static ~this()
 {
 if (buffer.length)
 {
 gc.removeRange(buffer);
 free(buffer);
 buffer = null;
 }
 }

 new(uint sz)
 { void *p;

 p = &buffer[bufindex];
 bufindex += sz;
 if (bufindex > buffer.length)
 throw new OutOfMemory;
 return p;
 }

 delete(void* p)
 {
 assert(0);
 }

 static int mark()
 {
 return bufindex;
 }

The D Programming Language

 130

 static void release(int i)
 {
 bufindex = i;
 }
 }

 void test()
 {
 int m = Foo.mark();
 Foo f1 = new Foo; // allocate
 Foo f2 = new Foo; // allocate
 ...
 Foo.release(m); // deallocate f1 and f2
 }

• The allocation of buffer[] itself is added as a region to the gc, so there is no need for a
separate call inside Foo.new() to do it.

RAII (Resource Acquisition Is Initialization)
RAII techniques can be useful in avoiding memory leaks when using explicit allocators and
deallocators. Adding the auto attribute to such classes can help.

Allocating Class Instances On The Stack
Allocating class instances on the stack is useful for temporary objects that are to be
automatically deallocated when the function is exited. No special handling is needed to
account for function termination via stack unwinding from an exception. To work, they must
not have destructors.
 import c.stdlib;

 class Foo
 {
 new(uint sz, void *p)
 {
 return p;
 }

 delete(void* p)
 {
 assert(0);
 }
 }

 void test()
 {
 Foo f = new(c.stdlib.alloca(Foo.classinfo.init.length)) Foo;
 ...
 }

• There is no need to check for a failure of alloca() and throw an exception, since by
definition alloca() will generate a stack overflow exception if it overflows.

• There is no need for a call to gc.addRange() or gc.removeRange() since the gc
automatically scans the stack anyway.

• The dummy delete() function is to ensure that no attempts are made to delete a stack
based object.

The D Programming Language

 131

Floating Point
Floating Point Intermediate Values
On many computers, greater precision operations do not take any longer than lesser precision
operations, so it makes numerical sense to use the greatest precision available for internal
temporaries. The philosophy is not to dumb down the language to the lowest common
hardware denominator, but to enable the exploitation of the best capabilities of target
hardware.

For floating point operations and expression intermediate values, a greater precision can be
used than the type of the expression. Only the minimum precision is set by the types of the
operands, not the maximum. Implementation Note: On Intel x86 machines, for example, it is
expected (but not required) that the intermediate calculations be done to the full 80 bits of
precision implemented by the hardware.

It's possible that, due to greater use of temporaries and common subexpressions, optimized
code may produce a more accurate answer than unoptimized code.

Algorithms should be written to work based on the minimum precision of the calculation.
They should not degrade or fail if the actual precision is greater. Float or double types, as
opposed to the extended type, should only be used for:

• reducing memory consumption for large arrays
• data and function argument compatibility with C

Complex and Imaginary types
In existing languages, there is an astonishing amount of effort expended in trying to jam a
complex type onto existing type definition facilities: templates, structs, operator overloading,
etc., and it all usually ultimately fails. It fails because the semantics of complex operations
can be subtle, and it fails because the compiler doesn't know what the programmer is trying to
do, and so cannot optimize the semantic implementation.

This is all done to avoid adding a new type. Adding a new type means that the compiler can
make all the semantics of complex work "right". The programmer then can rely on a correct
(or at least fixable) implementation of complex.

Coming with the baggage of a complex type is the need for an imaginary type. An imaginary
type eliminates some subtle semantic issues, and improves performance by not having to
perform extra operations on the implied 0 real part.

Imaginary literals have an i suffix:

 imaginary j = 1.3i;

There is no particular complex literal syntax, just add a real and imaginary type:
 complex c = 4.5 + 2i;

Adding two new types to the language is enough, hence complex and imaginary have
extended precision. There is no complex float or complex double type, and no imaginary float

The D Programming Language

 132

or imaginary double. [NOTE: the door is open to adding them in the future, but I doubt there's
a need]

Complex numbers have two properties:

 .re get real part as an extended
 .im get imaginary part as an imaginary

For example:
 c.re is 4.5
 c.im is 2i

Rounding Control
IEEE 754 floating point arithmetic includes the ability to set 4 different rounding modes. D
adds syntax to access them: [blah, blah, blah] [NOTE: this is perhaps better done with a
standard library call]

Exception Flags
IEEE 754 floating point arithmetic can set several flags based on what happened with a
computation: [blah, blah, blah]. These flags can be set/reset with the syntax: [blah, blah, blah]
[NOTE: this is perhaps better done with a standard library call]

Floating Point Comparisons
In addition to the usual < <= > >= == != comparison operators, D adds more that are specific
to floating point. These are [blah, blah, blah] and match the semantics for the NCEG
extensions to C.
 [insert table here]

The D Programming Language

 133

D x86 Inline Assembler
D, being a systems programming language, provides an
inline assembler. The inline assembler is standardized for
D implementations across the same CPU family, for
example, the Intel Pentium inline assembler for a Win32
D compiler will be syntax compatible with the inline
assembler for Linux running on an Intel Pentium.

Differing D implementations, however, are free to
innovate upon the memory model, function call/return

conventions, argument passing conventions, etc.

This document describes the x86 implementation of the inline assembler.

 AsmInstruction:
 Identifier : AsmInstruction
 align IntegerExpression
 even
 naked
 db Operands
 ds Operands
 di Operands
 dl Operands
 df Operands
 dd Operands
 de Operands
 Opcode
 Opcode Operands

 Operands
 Operand
 Operand , Operands

Labels
Assembler instructions can be labeled just like other statements. They can be the target of
goto statements. For example:
 void *pc;
 asm
 {
 call L1 ;
 L1: ;
 pop EBX ;
 mov pc[EBP],EBX ; // pc now points to code at L1
 }

align IntegerExpression
Causes the assembler to emit NOP instructions to align the next assembler instruction on an
IntegerExpression boundary. IntegerExpression must evaluate to an integer that is a power of
2.

http://www.digitalmars.com/gift/index.html

The D Programming Language

 134

Aligning the start of a loop body can sometimes have a dramatic effect on the execution
speed.

even
Causes the assembler to emit NOP instructions to align the next assembler instruction on an
even boundary.

naked
Causes the compiler to not generate the function prolog and epilog sequences. This means
such is the responsibility of inline assembly programmer, and is normally used when the
entire function is to be written in assembler.

db, ds, di, dl, df, dd, de
These pseudo ops are for inserting raw data directly into the code. db is for bytes, ds is for 16
bit words, di is for 32 bit words, dl is for 64 bit words, df is for 32 bit floats, dd is for 64 bit
doubles, and de is for 80 bit extended reals. Each can have multiple operands. If an operand is
a string literal, it is as if there were length operands, where length is the number of characters
in the string. One character is used per operand. For example:
 asm
 {
 db 5,6,0x83; // insert bytes 0x05, 0x06, and 0x83 into code
 ds 0x1234; // insert bytes 0x34, 0x12
 di 0x1234; // insert bytes 0x34, 0x12, 0x00, 0x00
 dl 0x1234; // insert bytes 0x34, 0x12, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00
 df 1.234; // insert float 1.234
 dd 1.234; // insert double 1.234
 de 1.234; // insert extended 1.234
 db "abc"; // insert bytes 0x61, 0x62, and 0x63
 ds "abc"; // insert bytes 0x61, 0x00, 0x62, 0x00, 0x63,
0x00
 }

Opcodes
A list of supported opcodes is at the end.

The following registers are supported. Register names are always in upper case.

AL, AH, AX, EAX
BL, BH, BX, EBX
CL, CH, CX, ECX
DL, DH, DX, EDX
BP, EBP
SP, ESP
DI, EDI
SI, ESI
ES, CS, SS, DS, GS, FS
CR0, CR2, CR3, CR4
DR0, DR1, DR2, DR3, DR6, DR7
TR3, TR4, TR5, TR6, TR7
ST
ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), ST(7)

The D Programming Language

 135

MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7

Special Cases
lock, rep, repe, repne, repnz, repz

These prefix instructions do not appear in the same statement as the instructions they
prefix; they appear in their own statement. For example:
 asm
 {
 rep ;
 movsb ;
 }

pause
This opcode is not supported by the assembler, instead use
 {
 rep ;
 nop ;
 }

which produces the same result.
floating point ops

Use the two operand form of the instruction format;
 fdiv ST(1); // wrong
 fmul ST; // wrong
 fdiv ST,ST(1); // right
 fmul ST,ST(0); // right

Operands
 Operand:
 AsmExp

 AsmExp:
 AsmLogOrExp
 AsmLogOrExp ? AsmExp : AsmExp

 AsmLogOrExp:
 AsmLogAndExp
 AsmLogAndExp || AsmLogAndExp

 AsmLogAndExp:
 AsmOrExp
 AsmOrExp && AsmOrExp

 AsmOrExp:
 AsmXorExp
 AsmXorExp | AsmXorExp

 AsmXorExp:
 AsmAndExp
 AsmAndExp ^ AsmAndExp

 AsmAndExp:
 AsmEqualExp
 AsmEqualExp & AsmEqualExp

 AsmEqualExp:
 AsmRelExp
 AsmRelExp == AsmRelExp

The D Programming Language

 136

 AsmRelExp != AsmRelExp

 AsmRelExp:
 AsmShiftExp
 AsmShiftExp < AsmShiftExp
 AsmShiftExp <= AsmShiftExp
 AsmShiftExp > AsmShiftExp
 AsmShiftExp >= AsmShiftExp

 AsmShiftExp:
 AsmAddExp
 AsmAddExp << AsmAddExp
 AsmAddExp >> AsmAddExp
 AsmAddExp >>> AsmAddExp

 AsmAddExp:
 AsmMulExp
 AsmMulExp + AsmMulExp
 AsmMulExp - AsmMulExp

 AsmMulExp:
 AsmBrExp
 AsmBrExp * AsmBrExp
 AsmBrExp / AsmBrExp
 AsmBrExp % AsmBrExp

 AsmBrExp:
 AsmUnaExp
 AsmBrExp [AsmExp]

 AsmUnaExp:
 AsmTypePrefix AsmExp
 offset AsmExp
 seg AsmExp
 + AsmUnaExp
 - AsmUnaExp
 ! AsmUnaExp
 ~ AsmUnaExp
 AsmPrimaryExp

 AsmPrimaryExp
 IntegerConstant
 FloatConstant
 __LOCAL_SIZE
 $
 Register
 DotIdentifier

 DotIdentifier
 Identifier
 Identifier . DotIdentifier

The operand syntax more or less follows the Intel CPU documentation conventions. In
particular, the convention is that for two operand instructions the source is the right operand
and the destination is the left operand. The syntax differs from that of Intel's in order to be
compatible with the D language tokenizer and to simplify parsing.

Operand Types
 AsmTypePrefix:
 near ptr
 far ptr

The D Programming Language

 137

 byte ptr
 short ptr
 int ptr
 word ptr
 dword ptr
 float ptr
 double ptr
 extended ptr

In cases where the operand size is ambiguous, as in:
 add [EAX],3 ;

it can be disambiguated by using an AsmTypePrefix:
 add byte ptr [EAX],3 ;
 add int ptr [EAX],7 ;

Struct/Union/Class Member Offsets
To access members of an aggregate, given a pointer to the aggregate is in a register, use the
qualified name of the member:
 struct Foo { int a,b,c; }
 int bar(Foo *f)
 {
 asm
 { mov EBX,f ;
 mov EAX,Foo.b[EBX] ;
 }
 }

Special Symbols
$

Represents the program counter of the start of the next instruction. So,
 jmp $;

branches to the instruction following the jmp instruction.
__LOCAL_SIZE

This gets replaced by the number of local bytes in the local stack frame. It is most
handy when the naked is invoked and a custom stack frame is programmed.

Opcodes Supported
aaa aad aam aas adc

add addpd addps addsd addss

and andnpd andnps andpd andps

arpl bound bsf bsr bswap

bt btc btr bts call

cbw cdq clc cld clflush

cli clts cmc cmova cmovae

cmovb cmovbe cmovc cmove cmovg

cmovge cmovl cmovle cmovna cmovnae

The D Programming Language

 138

cmovnb cmovnbe cmovnc cmovne cmovng

cmovnge cmovnl cmovnle cmovno cmovnp

cmovns cmovnz cmovo cmovp cmovpe

cmovpo cmovs cmovz cmp cmppd

cmpps cmps cmpsb cmpsd cmpss

cmpsw cmpxch8b cmpxchg comisd comiss

cpuid cvtdq2pd cvtdq2ps cvtpd2dq cvtpd2pi

cvtpd2ps cvtpi2pd cvtpi2ps cvtps2dq cvtps2pd

cvtps2pi cvtsd2si cvtsd2ss cvtsi2sd cvtsi2ss

cvtss2sd cvtss2si cvttpd2dq cvttpd2pi cvttps2dq

cvttps2pi cvttsd2si cvttss2si cwd cwde

da daa das db dd

de dec df di div

divpd divps divsd divss dl

dq ds dt dw emms

enter f2xm1 fabs fadd faddp

fbld fbstp fchs fclex fcmovb

fcmovbe fcmove fcmovnb fcmovnbe fcmovne

fcmovnu fcmovu fcom fcomi fcomip

fcomp fcompp fcos fdecstp fdiv

fdivp fdivr fdivrp ffree fiadd

ficom ficomp fidiv fidivr fild

fimul fincstp finit fist fistp

fisub fisubr fld fld1 fldcw

fldenv fldl2e fldl2t fldlg2 fldln2

fldpi fldz fmul fmulp fnclex

fninit fnop fnsave fnstcw fnstenv

fnstsw fpatan fprem fprem1 fptan

frndint frstor fsave fscale fsetpm

fsin fsincos fsqrt fst fstcw

fstenv fstp fstsw fsub fsubp

fsubr fsubrp ftst fucom fucomi

fucomip fucomp fucompp fwait fxam

The D Programming Language

 139

fxch fxrstor fxsave fxtract fyl2x

fyl2xp1 hlt idiv imul in

inc ins insb insd insw

int into invd invlpg iret

iretd ja jae jb jbe

jc jcxz je jecxz jg

jge jl jle jmp jna

jnae jnb jnbe jnc jne

jng jnge jnl jnle jno

jnp jns jnz jo jp

jpe jpo js jz lahf

lar ldmxcsr lds lea leave

les lfence lfs lgdt lgs

lidt lldt lmsw lock lods

lodsb lodsd lodsw loop loope

loopne loopnz loopz lsl lss

ltr maskmovdqu maskmovq maxpd maxps

maxsd maxss mfence minpd minps

minsd minss mov movapd movaps

movd movdq2q movdqa movdqu movhlps

movhpd movhps movlhps movlpd movlps

movmskpd movmskps movntdq movnti movntpd

movntps movntq movq movq2dq movs

movsb movsd movss movsw movsx

movupd movups movzx mul mulpd

mulps mulsd mulss neg nop

not or orpd orps out

outs outsb outsd outsw packssdw

packsswb packuswb paddb paddd paddq

paddsb paddsw paddusb paddusw paddw

pand pandn pavgb pavgw pcmpeqb

pcmpeqd pcmpeqw pcmpgtb pcmpgtd pcmpgtw

pextrw pinsrw pmaddwd pmaxsw pmaxub

The D Programming Language

 140

pminsw pminub pmovmskb pmulhuw pmulhw

pmullw pmuludq pop popa popad

popf popfd por prefetchnta prefetcht0

prefetcht1 prefetcht2 psadbw pshufd pshufhw

pshuflw pshufw pslld pslldq psllq

psllw psrad psraw psrld psrldq

psrlq psrlw psubb psubd psubq

psubsb psubsw psubusb psubusw psubw

punpckhbw punpckhdq punpckhqdq punpckhwd punpcklbw

punpckldq punpcklqdq punpcklwd push pusha

pushad pushf pushfd pxor rcl

rcpps rcpss rcr rdmsr rdpmc

rdtsc rep repe repne repnz

repz ret retf rol ror

rsm rsqrtps rsqrtss sahf sal

sar sbb scas scasb scasd

scasw seta setae setb setbe

setc sete setg setge setl

setle setna setnae setnb setnbe

setnc setne setng setnge setnl

setnle setno setnp setns setnz

seto setp setpe setpo sets

setz sfence sgdt shl shld

shr shrd shufpd shufps sidt

sldt smsw sqrtpd sqrtps sqrtsd

sqrtss stc std sti stmxcsr

stos stosb stosd stosw str

sub subpd subps subsd subss

sysenter sysexit test ucomisd ucomiss

ud2 unpckhpd unpckhps unpcklpd unpcklps

verr verw wait wbinvd wrmsr

xadd xchg xlat xlatb xor

xorpd xorps

The D Programming Language

 141

AMD Opcodes Supported
pavgusb pf2id pfacc pfadd pfcmpeq

pfcmpge pfcmpgt pfmax pfmin pfmul

pfnacc pfpnacc pfrcp pfrcpit1 pfrcpit2

pfrsqit1 pfrsqrt pfsub pfsubr pi2fd

pmulhrw pswapd

The D Programming Language

 142

Interfacing to C
D is designed to fit comfortably with a C compiler for the target system. D makes up for not
having its own VM by relying on the target environment's C runtime library. It would be
senseless to attempt to port to D or write D wrappers for the vast array of C APIs available.
How much easier it is to just call them directly.

This is done by matching the C compiler's data types, layouts, and function call/return
sequences.

Calling C Functions
C functions can be called directly from D. There is no need for wrapper functions, argument
swizzling, and the C functions do not need to be put into a separate DLL.

The C function must be declared and given a calling convention, most likely the "C" calling
convention, for example:

 extern (C) int strcmp(char *string1, char *string2);

and then it can be called within D code in the obvious way:
 import string;
 int myDfunction(char[] s)
 {
 return strcmp(string.toCharz(s), "foo\0");
 }

There are several things going on here:

• D understands how C function names are "mangled" and the correct C function
call/return sequence.

• C functions cannot be overloaded with another C function with the same name.
• There are no __cdecl, __far, __stdcall, __declspec, or other such C type modifiers in

D. These are handled by attributes, such as extern (C).
• There are no const or volatile type modifiers in D. To declare a C function that uses

those type modifiers, just drop those keywords from the declaration.
• Strings are not 0 terminated in D. See "Data Type Compatibility" for more

information about this.

C code can correspondingly call D functions, if the D functions use an attribute that is
compatible with the C compiler, most likely the extern (C):
 // myfunc() can be called from any C function
 extern (C)
 {
 void myfunc(int a, int b)
 {
 ...
 }
 }

The D Programming Language

 143

Storage Allocation
C code explicitly manages memory with calls to malloc() and free(). D allocates memory
using the D garbage collector, so no explicit free's are necessary.

D can still explicitly allocate memory using c.stdlib.malloc() and c.stdlib.free(), these are
useful for connecting to C functions that expect malloc'd buffers, etc.

If pointers to D garbage collector allocated memory are passed to C functions, it's critical to
ensure that that memory will not be collected by the garbage collector before the C function is
done with it. This is accomplished by:

• Making a copy of the data using c.stdlib.malloc() and passing the copy instead.
• Leaving a pointer to it on the stack (as a parameter or automatic variable), as the

garbage collector will scan the stack.
• Leaving a pointer to it in the static data segment, as the garbage collector will scan the

static data segment.
• Registering the pointer with the garbage collector with the gc.addRoot() or

gc.addRange() calls.

An interior pointer to the allocated memory block is sufficient to let the GC know the object is
in use; i.e. it is not necessary to maintain a pointer to the beginning of the allocated memory.

The garbage collector does not scan the stacks of threads not created by the D Thread
interface. Nor does it scan the data segments of other DLL's, etc.

Data Type Compatibility
D type C type

void void

bit no equivalent

byte signed char

ubyte unsigned char

char char (chars are unsigned in D)

wchar wchar_t

short short

ushort unsigned short

int int

uint unsigned

long long long

ulong unsigned long long

float float

double double

The D Programming Language

 144

extended long double

imaginary long double _Imaginary

complex long double _Complex

type* type *

type[dim] type[dim]

type[] no equivalent

type[type] no equivalent

"string\0" "string" or L"string"

class no equivalent

type(*)(parameters) type(*)(parameters)
These equivalents hold for most 32 bit C compilers. The C standard does not pin down the
sizes of the types, so some care is needed.

Calling printf()
This mostly means checking that the printf format specifier matches the corresponding D data
type. Although printf is designed to handle 0 terminated strings, not D dynamic arrays of
chars, it turns out that since D dynamic arrays are a length followed by a pointer to the data,
the %.*s format works perfectly:
 void foo(char[] string)
 {
 printf("my string is: %.*s\n", string);
 }

Astute readers will notice that the printf format string literal in the example doesn't end with
\0. This is because string literals, when they are not part of an initializer to a larger data
structure, have a \0 character helpfully stored after the end of them.

Structs and Unions
D structs and unions are analogous to C's.

C code often adjusts the alignment and packing of struct members with a command line
switch or with various implementation specific #pragma's. D supports explicit alignment
attributes that correspond to the C compiler's rules. Check what alignment the C code is using,
and explicitly set it for the D struct declaration.

D does not support bit fields. If needed, they can be emulated with shift and mask operations.

The D Programming Language

 145

Interfacing to C++
D does not provide an interface to C++. Since D, however, interfaces directly to C, it can
interface directly to C++ code if it is declared as having C linkage.

D class objects are incompatible with C++ class objects.

The D Programming Language

 146

Portability Guide
It's good software engineering practice to minimize gratuitous portability problems in the
code. Techniques to minimize potential portability problems are:

• The integral and floating type sizes should be considered as minimums. Algorithms
should be designed to continue to work properly if the type size increases.

• The wchar type can be either 2 or 4 bytes wide in current implementations; future
implementations can increase the size further.

• Floating point computations can be carried out at a higher precision than the size of
the floating point variable can hold. Floating point algorithms should continue to work
properly if precision is arbitrarilly increased.

• Avoid depending on the order of side effects in a computation that may get reordered
by the compiler. For example:

• a + b + c

can be evaluated as (a + b) + c, a + (b + c), (a + c) + b, (c + b) + a, etc. Parenthesis
control operator precedence, parenthesis do not control order of evaluation.

In particular, function parameters can be evaluated either left to right or right to left,
depending on the particular calling conventions used.

• Avoid dependence on byte order; i.e. whether the CPU is big-endian or little-endian.
• Avoid dependence on the size of a pointer or reference being the same size as a

particular integral type.
• If size dependencies are inevitable, put an assert in the code to verify it:
• assert(int.size == (int*).size);

OS Specific Code
System specific code is handled by isolating the differences into separate modules. At
compile time, the correct system specific module is imported.

Minor differences can be handled by constant defined in a system specific import, and then
using that constant in an if statement.

The D Programming Language

 147

Embedding D in HTML
The D compiler is designed to be able to extract and compile D code embedded within HTML
files. This capability means that D code can be written to be displayed within a browser
utilizing the full formatting and display capability of HTML.

For example, it is possible to make all uses of a class name actually be hyperlinks to where
the class is defined. There's nothing new to learn for the person browsing the code, he just
uses the normal features of an HTML browser. Strings can be displayed in green, comments
in red, and keywords in boldface, for one possibility. It is even possible to embed pictures in
the code, as normal HTML image tags.

Embedding D in HTML makes it possible to put the documentation for code and the code
itself all together in one file. It is no longer necessary to relegate documentation in comments,
to be extracted later by a tech writer. The code and the documentation for it can be maintained
simultaneously, with no duplication of effort.

How it works is straightforward. If the source file to the compiler ends in .htm or .html, the
code is assumed to be embedded in HTML. The source is then preprocessed by stripping all
text outside of <code> and </code> tags. Then, all other HTML tags are stripped, and
embedded character encodings are converted to ASCII. All newlines in the original HTML
remain in their corresponding positions in the preprocessed text, so the debug line numbers
remain consistent. The resulting text is then fed to the D compiler.

Here's an example of the D program "hello world" embedded in this very HTML file. This file
can be compiled and run.

import Object;
import stdio;

int main()
{
 printf("hello world\n");
 return 0;
}

The D Programming Language

 148

D Runtime Model
Object Model
An object consists of:

 offset contents
 ------ --------
 0: pointer to vtable
 4: monitor
 8... non-static members

The vtable consists of:

 0: pointer to instance of ClassLayout
 4... pointers to virtual member functions

Array Model
A dynamic array consists of:

 0: pointer to array data
 4: array dimension

A dynamic array is declared as:

 type array[];

whereas a static array is declared as:

 type array[dimension];

Thus, a static array always has the dimension statically available as part
of the type, and
so it is implemented like in C. Static array's and Dynamic arrays can be
easilly converted back
and forth to each other.

Reference Types

D has reference types, but they are implicit. For example, classes are
always
referred to by reference; this means that class instances can never reside
on the stack
or be passed as function parameters.

When passing a static array to a function, the result, although declared as
a static array, will
actually be a reference to a static array. For example:

 int abc[3];

Passing abc to functions results in these implicit conversions:

 void func(int array[3]); // actually
 void func(int *p); // abc[3] is converted to a pointer to the
first element
 void func(int array[]); // abc[3] is converted to a dynamic array

The D Programming Language

 149

Class Model

The class definition:

class XXXX
{

};

Generates the following:

o An instance of Class called ClassXXXX.

o A type called StaticClassXXXX which defines all the static members.

o An instance of StaticClassXXXX called StaticXXXX for the static
members.

The D Programming Language

 150

Phobos

D Runtime Library
Phobos is the standard runtime library that comes with the D language compiler.

Philosophy
Each module in Phobos conforms as much as possible to the following design goals. These
are goals rather than requirements because D is not a religion, it's a programming language,
and it recognizes that sometimes the goals are contradictory and counterproductive in certain
situations, and programmers have jobs that need to get done.
Machine and Operating System Independent Interfaces

It's pretty well accepted that gratuitous non-portability should be avoided. This should
not be construed, however, as meaning that access to unusual features of an operating
system should be prevented.

Simple Operations should be Simple
A common and simple operation, like writing an array of bytes to a file, should be
simple to code. I haven't seen a class library yet that simply and efficiently
implemented common, basic file I/O operations.

Classes should strive to be independent of one another
It's discouraging to pull in a megabyte of code bloat by just trying to read a file into an
array of bytes. Class independence also means that classes that turn out to be mistakes
can be deprecated and redesigned without forcing a rewrite of the rest of the class
library.

No pointless wrappers around C runtime library functions or OS API functions
D provides direct access to C runtime library functions and operating system API
functions. Pointless D wrappers around those functions just adds blather, bloat,
baggage and bugs.

No user interface windowing classes
GUI styles, philosophies, etc., are not portable from machine to machine. A GUI
Windows app should look like a Windows app when running on a Windows machine.
It should not look and feel like a Mac app unless it is running on a Mac. Attempts to
create a common GUI class library between Windows, Mac, and other GUI operating
systems have all to my knowledge failed.
Java has a successful GUI class library, but does so by creating its own GUI with its
own look and feel. This approach is fine for a web language, but not for a systems
language like D is.
Windowing class libraries should be separate.

Class implementations should use DBC
This will prove that DBC (Design by Contract) is worthwhile. Not only will it aid in
debugging the class, but it will help every class user use the class correctly. DBC in
the class library will have great leverage.

Use Exceptions for Error Handling
See Error Handling in D.

Imports
Each of these can be imported with the import statement. The categories are:

The D Programming Language

 151

Core D: Available on all D implementations
compiler

Information about the D compiler implementation.
conv

Conversion of strings to integers.
ctype

Simple character classification
date

Date and time functions. Support locales.
file

Basic file operations like read, write, append.
gc

Control the garbage collector.
math

Include all the usual math functions like sin, cos, atan, etc.
object

The root class of the inheritance heirarchy
outbuffer

Assemble data into an array of bytes
path

Manipulate file names, path names, etc.
process

Create/destroy threads.
random

Random number generation.
regexp

The usual regular expression functions.
stdint

Integral types for various purposes.
stream

Stream I/O.
string

Basic string operations not covered by array ops.
system

Inquire about the CPU, operating system.
thread

One per thread. Operations to do on a thread.
zip

Manipulate zip files.

Standard C: interface to C functions
stdio

Interface to C stdio functions like printf().

Operating System and Hardware: platform specific
intrinsic

Compiler built in intrinsic functions
windows

Interface to Windows APIs

The D Programming Language

 152

compiler
char[] name;

Vendor specific string naming the compiler, for example: "Digital Mars D".
enum Vendor

Master list of D compiler vendors.
DigitalMars
Digital Mars

Vendor vendor;
Which vendor produced this compiler.

uint version_major;
uint version_minor;

The vendor specific version number, as in version_major.version_minor.
uint D_major;
uint D_minor;

The version of the D Programming Language Specification supported by the compiler.

conv
conv provides basic building blocks for conversions from strings to integral types. They differ
from the C functions atoi() and atol() by not allowing whitespace or overflows.

For conversion to signed types, the grammar recognized is:

 Integer:
 Sign UnsignedInteger
 UnsignedInteger

 Sign:
 +
 -

For conversion to unsigned types, the grammar recognized is:
 UnsignedInteger:
 DecimalDigit
 DecimalDigit UnsignedInteger

Any deviation from that grammar causes a ConvError exception to be thrown. Any
overflows cause a ConvOverflowError to be thrown.
byte toByte(char[] s)
ubyte toUbyte(char[] s)
short toShort(char[] s)
ushort toUshort(char[] s)
int toInt(char[] s)
uint toUint(char[] s)
long toLong(char[] s)
ulong toUlong(char[] s)

ctype
int isalnum(char c)

Returns !=0 if c is a letter or a digit.
int isalpha(char c)

The D Programming Language

 153

Returns !=0 if c is an upper or lower case letter.
int iscntrl(char c)

Returns !=0 if c is a control character.
int isdigit(char c)

Returns !=0 if c is a digit.
int isgraph(char c)

Returns !=0 if c is a printing character except for the space character.
int islower(char c)

Returns !=0 if c is lower case.
int isprint(char c)

Returns !=0 if c is a printing character or a space.
int ispunct(char c)

Returns !=0 if c is a punctuation character.
int isspace(char c)

Returns !=0 if c is a space, tab, vertical tab, form feed, carriage return, or linefeed.
int isupper(char c)

Returns !=0 if c is an upper case character.
int isxdigit(char c)

Returns !=0 if c is a hex digit (0..9, a..f, A..F).
int isascii(uint c)

Returns !=0 if c is in the ascii character set.
char tolower(char c)

If c is upper case, return the lower case equivalent, otherwise return c.
char toupper(char c)

If c is lower case, return the upper case equivalent, otherwise return c.

date
Dates are represented in several formats. The date implementation revolves around a central
type, d_time, from which other formats are converted to and from.
typedef d_time

Is a signed arithmetic type giving the time elapsed since January 1, 1970. Negative
values are for dates preceding 1970. The time unit used is Ticks. Ticks are
milliseconds or smaller intervals.

The usual arithmetic operations can be performed on d_time, such as adding,
subtracting, etc. Elapsed time in Ticks can be computed by subtracting a starting
d_time from an ending d_time.

An invalid value for d_time is represented by d_time.init.

int TicksPerSecond
A constant giving the number of Ticks per second for this implementation. It will be at
least 1000.

char[] toString(d_time t)
Converts t into a text string of the form: "Www Mmm dd hh:mm:ss GMT+-TZ yyyy",
for example, "Tue Apr 02 02:04:57 GMT-0800 1996". If t is invalid, "Invalid date" is
returned.

char[] toDateString(d_time t)
Converts the date portion fo t into a text string of the form: "Www Mmm dd yyyy",
for example, "Tue Apr 02 1996". If t is invalid, "Invalid date" is returned.

The D Programming Language

 154

char[] toTimeString(d_time t)
Converts the time portion of t into a text string of the form: "hh:mm:ss GMT+-TZ",
for example, "02:04:57 GMT-0800". If t is invalid, "Invalid date" is returned.

d_time parse(char[] s)
Parses s as a textual date string, and returns it as a d_time. If the string is not a valid
date, d_time.init is returned.

d_time getUTCtime()
Get current UTC time.

d_time UTCtoLocalTime(d_time t)
Convert from UTC time to local time.

d_time LocalTimetoUTC(d_time t)
Convert from local time to UTC time.

file
class FileException

Exception thrown if file I/O errors.
byte[] read(char[] name)

Read file name[], return array of bytes read.
void write(char[] name, byte[] buffer)

Write buffer[] to file name[].
void append(char[] name, byte[] buffer)

Append buffer[] to file name[].
void rename(char[] from, char[] to)

Rename file from[] to to[].
void remove(char[] name)

Delete file name[].
uint getSize(char[] name)

Get size of file name[].
uint getAttributes(char[] name)

Get file name[] attributes.

gc
The garbage collector normally works behind the scenes without needing any specific
interaction. These functions are for advanced applications that benefit from tuning the
operation of the collector.
class OutOfMemory

Thrown if garbage collector runs out of memory.
void addRoot(void *p)

Add p to list of roots. Roots are references to memory allocated by the collector that
are maintained in memory outside the collector pool. The garbage collector will by
default look for roots in the stacks of each thread, the registers, and the default static
data segment. If roots are held elsewhere, use addRoot() or addRange() to tell the
collector not to free the memory it points to.

void removeRoot(void *p)
Remove p from list of roots.

void addRange(void *pbot, void *ptop)
Add range to scan for roots.

void removeRange(void *pbot)
Remove range.

The D Programming Language

 155

void fullCollect()
Run a full garbage collection cycle. The collector normally runs synchronously with a
storage allocation request (i.e. it never happens when in code that does not allocate
memory). In some circumstances, for example when a particular task is finished, it is
convenient to explicitly run the collector and free up all memory used by that task. It
can also be helpful to run a collection before starting a new task that would be
annoying if it ran a collection in the middle of that task. Explicitly running a collection
can also be done in a separate very low priority thread, so that if the program is idly
waiting for input, memory can be cleaned up.

void genCollect()
Run a generational garbage collection cycle. Takes less time than a fullCollect(), but
isn't as effective.

void minimize()
Minimize physical memory usage.

void disable()
Temporarilly disable garbage collection cycle. This is used for brief time critical
sections of code, so the amount of time it will take is predictable. If the collector runs
out of memory while it is disabled, it will throw an OutOfMemory exception. The
disable() function calls can be nested, but must be matched with corresponding
enable() calls.

void enable()
Reenable garbage collection cycle after being disabled with disable(). It is an error to
call more enable()s than disable()s.

intrinsic
Intrinsic functions are functions built in to the compiler, usually to take advantage of specific
CPU features that are inefficient to handle via external functions. The compiler's optimizer
and code generator are fully integrated in with intrinsic functions, bringing to bear their full
power on them. This can result in some surprising speedups.
int bsf(uint v)

Scans the bits in v starting with bit 0, looking for the first set bit.
int bsr(uint v)

Scans the bits in v from the most significant bit to the least significant bit, looking for
the first set bit.

Both return the bit number of the first set bit. The return value is undefined if v is zero.

Example

 import intrinsic;

 int main()
 {
 uint v;
 int x;

 v = 0x21;
 x = bsf(v);
 printf("bsf(x%x) = %d\n", v, x);
 x = bsr(v);
 printf("bsr(x%x) = %d\n", v, x);

The D Programming Language

 156

 return 0;
 }

Output
 bsf(x21) = 0
 bsr(x21) = 5

int bt(uint *p, uint index)
Tests the bit.

int btc(uint *p, uint index)
Tests and complements the bit.

int btr(uint *p, uint index)
Tests and resets (sets to 0) the bit.

int bts(uint *p, uint index)
Tests and sets the bit.

p is a non-NULL pointer to an array of uints. index is a bit number, starting with bit 0
of p[0], and progressing. It addresses bits like the expression:

 p[index / (uint.size*8)] & (1 << (index & ((uint.size*8) - 1)))

All return a non-zero value if the bit was set, and a zero if it was clear.

Example

 import intrinsic;

 int main()
 {
 uint array[2];

 array[0] = 2;
 array[1] = 0x100;

 printf("btc(array, 35) = %d\n", btc(array, 35));
 printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 printf("btc(array, 35) = %d\n", btc(array, 35));
 printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 printf("bts(array, 35) = %d\n", bts(array, 35));
 printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 printf("btr(array, 35) = %d\n", btr(array, 35));
 printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 printf("bt(array, 1) = %d\n", bt(array, 1));
 printf("array = [0]:x%x, [1]:x%x\n", array[0], array[1]);

 return 0;
 }

Output
 btc(array, 35) = 0
 array = [0]:x2, [1]:x108

The D Programming Language

 157

 btc(array, 35) = -1
 array = [0]:x2, [1]:x100
 bts(array, 35) = 0
 array = [0]:x2, [1]:x108
 btr(array, 35) = -1
 array = [0]:x2, [1]:x100
 bt(array, 1) = -1
 array = [0]:x2, [1]:x100

ubyte inp(uint port_address)
ushort inpw(uint port_address)
uint inpl(uint port_address)

Reads I/O port at port_address.
ubyte outp(uint port_address, ubyte value)
ushort outpw(uint port_address, ushort value)
uint outpl(uint port_address, uint value)

Writes and returns value to I/O port at port_address.
real cos(real)
real fabs(real)
real rint(real)
long rndtol(real)
real sin(real)
real sqrt(real)

Intrinsic verions of the math functions of the same name.

math
const real PI
const real LOG2
const real LN2
const real LOG2T
const real LOG2E
const real E
const real LOG10E
const real LN10
const real PI_2
const real PI_4
const real M_1_PI
const real M_2_PI
const real M_2_SQRTPI
const real SQRT2
const real SQRT1_2

Math constants.
real acos(real)
real asin(real)
real atan(real)
real atan2(real, real)
real cos(real x)

Compute cosine of x. x is in radians.
Special values:

x return value invalid?

±INFINITY NAN yes

The D Programming Language

 158

real sin(real x)
Compute sine of x. x is in radians.
Special values:

x return value invalid?

±0.0 ±0.0 no

±INFINITY NAN yes
real tan(real x)

Compute tangent of x. x is in radians.
Special values:

x return value invalid?

±0.0 ±0.0 no

±INFINITY NAN yes
real cosh(real)
real sinh(real)
real tanh(real)
real exp(real)
real frexp(real value, out int exp)

Calculate and return x and exp such that:
value=x*2exp
.5 <= |x| < 1.0
x has same sign as value.
Special values:

value x exp

+-0.0 +-0.0 0

+INFINITY +INFINITY int.max

-INFINITY -INFINITY int.min

+-NAN +-NAN int.min
real ldexp(real n, int exp)

Compute n * 2exp
real log(real x)

Calculate the natural logarithm of x.
Special values:

x return value divide by 0? invalid?

±0.0 -INFINITY yes no

< 0.0 NAN no yes

+INFINITY +INFINITY no no
real log10(real x)

Calculate the base-10 logarithm of x.
Special values:

x return value divide by 0? invalid?

±0.0 -INFINITY yes no

The D Programming Language

 159

< 0.0 NAN no yes

+INFINITY +INFINITY no no
real modf(real, real *)
real pow(real, real)
real sqrt(real x)

Compute square root of x.
Special values:

x return value invalid?

-0.0 -0.0 no

<0.0 NAN yes

+INFINITY +INFINITY no
real ceil(real)
real floor(real)
real log1p(real x)

Calculates the natural logarithm of 1 + x. For very small x, log1p(x) will be more
accurate than log(1 + x).
Special values:

x log1p(x) divide by 0? invalid?

±0.0 ±0.0 no no

-1.0 -INFINITY yes no

<-1.0 NAN no yes

+INFINITY -INFINITY no no
real expm1(real x)

Calculates the value of the natural logarithm base (e) raised to the power of x, minus 1.
For very small x, expm1(x) is more accurate than exp(x)-1.
Special values:

x ex-1

±0.0 ±0.0

+INFINITY +INFINITY

-INFINITY -1.0
real atof(char *)

Math functions.
real hypot(real x, real y)

Calculates the length of the hypotenuse of a right-angled triangle with sides of length x
and y. The hypotenuse is the value of the square root of the sums of the squares of x
and y:
 sqrt(x2 + y2)

Note that hypot(x,y), hypot(y,x) and hypot(x,-y) are equivalent.
Special values:

x y return value invalid?

x +-0.0 fabs(x) no

The D Programming Language

 160

+-INFINITY y +INFINITY no

+-INFINITY NAN +INFINITY no
int isnan(real e)

Is number a nan?
int isfinite(real e)

Is number finite?
int isnormal(float f)
int isnormal(double d)
int isnormal(real e)

Is number normalized?
int issubnormal(float f)
int issubnormal(double d)
int issubnormal(real e)

Is number subnormal? (Also called "denormal".) Subnormals have a 0 exponent and a
0 most significant mantissa bit.

int isinf(real e)
Is number infinity?

int signbit(real e)
Get sign bit.

real copysign(real to, real from)
Copy sign.

object
This module is implicitly imported.
class Object

All class objects in D inherit from Object.
static int printf(char* format, ...);
C printf function.
char[] toString()
Convert Object to a human readable string.
uint toHash()
Compute hash function for Object.
int cmp(Object obj)
Compare with another Object obj. Returns:
<0 for (this < obj)
=0 for (this == obj)
>0 for (this > obj)

class ClassInfo
Runtime type information about a class.

class Exception
All exceptions should be derived from class Exception.

outbuffer
class OutBuffer

OutBuffer provides a way to build up an array of bytes out of raw data. It is useful for
things like preparing an array of bytes to write out to a file. OutBuffer's byte order is
the format native to the computer. To control the byte order (endianness), use a class

The D Programming Language

 161

derived from OutBuffer. To convert an array of bytes back into raw data, use
InBuffer.
void reserve(uint nbytes)
Preallocate nbytes more to the size of the internal buffer. This is a speed optimization,
a good guess at the maximum size of the resulting buffer will improve performance by
eliminating reallocations and copying.
void write(ubyte[] bytes)
void write(ubyte b)
void write(byte b)
void write(char c)
void write(ushort w)
void write(short s)
void write(wchar c)
void write(uint w)
void write(int i)
void write(ulong l)
void write(long l)
void write(float f)
void write(double f)
void write(real f)
void write(char[] s)
void write(OutBuffer buf)
Append data to the internal buffer.
void fill0(uint nbytes)
Append nbytes of 0 to the internal buffer.
void alignSize(uint alignsize)
0-fill to align on an alignsize boundary. alignsize must be a power of 2.
void align2()
Optimize common special case alignSize(2)
void align4()
Optimize common special case alignSize(4)
ubyte[] toBytes()
Convert internal buffer to array of bytes.
char[] toString()
Convert internal buffer to array of chars.
void vprintf(char[] format, va_list args)
Append output of vprintf() to internal buffer.
void printf(char[] format, ...)
Append output of printf() to internal buffer.
void spread(uint index, uint nbytes)
At offset index into buffer, create nbytes of space by shifting upwards all data past
index.

path
const char[] sep;

Character used to separate directory names in a path.
const char[] altsep;

Alternate version of sep[], used in Windows.
const char[] pathsep;

Path separator string.

The D Programming Language

 162

const char[] linesep;
String used to separate lines.

const char[] curdir;
String representing the current directory.

const char[] pardir;
String representing the parent directory.

char[] getExt(char[] fullname)
Get extension. For example, "d:\path\foo.bat" returns "bat".

char[] getBaseName(char[] fullname)
Get base name. For example, "d:\path\foo.bat" returns "foo.bat".

char[] getDirName(char[] fullname)
Get directory name. For example, "d:\path\foo.bat" returns "d:\path".

char[] getDrive(char[] fullname)
Get drive. For example, "d:\path\foo.bat" returns "d:". Returns null string on systems
without the concept of a drive.

char[] defaultExt(char[] fullname, char[] ext)
Put a default extension on fullname if it doesn't already have an extension.

char[] addExt(char[] fullname, char[] ext)
Add file extension or replace existing extension.

int isabs(char[] path)
Determine if absolute path name.

char[] join(char[] p1, char[] p2)
Join two path components.

int fncharmatch(char c1, char c2)
Match file name characters. Case sensitivity depends on the operating system.

int fnmatch(char[] name, char[] pattern)
Match filename strings with pattern[], using the following wildcards:
* match 0 or more characters
? match any character
[chars] match any character that appears between the []
[!chars] match any character that does not appear between the [!]
Matching is case sensitive on a file system that is case sensitive.
Returns:
!=0 match
0 no match

process

random
void rand_seed(uint seed, uint index)

The random number generator is seeded at program startup with a random value. This
ensures that each program generates a different sequence of random numbers. To
generate a repeatable sequence, use rand_seed() to start the sequence. seed and index
start it, and each successive value increments index. This means that the nth random
number of the sequence can be directly generated by passing index + n to
rand_seed().

uint rand()
Get next random number in sequence.

The D Programming Language

 163

regexp
RegExp is a D class to handle regular expressions. Regular expressions are a powerful method
of string pattern matching. The RegExp class is the core foundation for adding powerful string
pattern matching capabilities to programs like grep, text editors, awk, sed, etc. The regular
expression language used is the same as that commonly used, however, some of the very
advanced forms may behave slightly differently.

The RegExp class has these methods:

this(char[] pattern, char[] attributes)
Create a new RegExp object. Compile pattern[] with attributes[] into an internal
form for fast execution. Throws a RegExpError if there are any compilation errors.

char[][] split(char[] string)
Split string[] into an array of strings, using the regular expression as the separator.
Returns array of slices in string[].

int search(char[] string)
Search string[] for match with regular expression.
Returns Description

>=0 index of match

-1 no match
char[][] match(char[] string)

Search string[] for match.
Attribute Returns

global same as call to exec(string)

not global array of all matches
char[][] exec(char[] string)

Search string[] for next match. Returns array of slices into string[] representing
matches.

int test(char[] string)
Search string[] for next match.
Returns Description

0 no match

!=0 match
char[] replace(char[] string, char[] format)

Find regular expression matches in string[]. Replace those matches with a new string
composed of format[] merged with the result of the matches.
Attribute Action

global replace all matches

not global replace first match
Returns the new string.

char[] replace(char[] format)
After a match is found with test(), this function will take the match results and, using
the format[] string, generate and return a new string. The format commands are:

The D Programming Language

 164

Format Description

$$ insert $

$& insert the matched substring

$` insert the string that precedes the match

$' insert the string that following the match

$n replace with the nth parenthesized match, n is 1..9

$nn replace with the nnth parenthesized match, nn is 01..99

$ insert $
char[] replaceOld(char[] format)

Like replace(char[] format), but uses old style formatting:
Format Description

& replace with the match

\n replace with the nth parenthesized match, n is 1..9

\c replace with char c.

stdint
D constrains integral types to specific sizes. But efficiency of different sizes varies from
machine to machine, pointer sizes vary, and the maximum integer size varies. stdint offers a
portable way of trading off size vs efficiency, in a manner compatible with the stdint.h
definitions in C.

The exact aliases are types of exactly the specified number of bits. The at least aliases are at
least the specified number of bits large, and can be larger. The fast aliases are the fastest
integral type supported by the processor that is at least as wide as the specified number of bits.

The aliases are:

Exact
Alias Description At Least

Alias Description Fast Alias Description

int8_t exactly 8 bits
signed int_least8_t at least 8 bits

signed int_fast8_t fast 8 bits
signed

uint8_t exactly 8 bits
unsigned uint_least8_t at least 8 bits

unsigned uint_fast8_t fast 8 bits
unsigned

int16_t exactly 16 bits
signed int_least16_t at least 16 bits

signed int_fast16_t fast 16 bits
signed

The D Programming Language

 165

uint16_t exactly 16 bits
unsigned uint_least16_t at least 16 bits

unsigned uint_fast16_t fast 16 bits
unsigned

int32_t exactly 32 bits
signed int_least32_t at least 32 bits

signed int_fast32_t fast 32 bits
signed

uint32_t exactly 32 bits
unsigned uint_least32_t at least 32 bits

unsigned uint_fast32_t fast 32 bits
unsigned

int64_t exactly 64 bits
signed int_least64_t at least 64 bits

signed int_fast64_t fast 64 bits
signed

uint64_t exactly 64 bits
unsigned uint_least64_t at least 64 bits

unsigned uint_fast64_t fast 64 bits
unsigned

The ptr aliases are integral types guaranteed to be large enough to hold a pointer without
losing bits:

Alias Description

intptr_t signed integral type large enough to hold a pointer

uintptr_t unsigned integral type large enough to hold a pointer

The max aliases are the largest integral types:

Alias Description

intmax_t the largest signed integral type

uintmax_t the largest unsigned integral type

stream
class Stream

Stream is the base abstract class from which the other stream classes derive. Stream's
byte order is the format native to the computer.

bit readable
Indicates whether this stream can be read from.

bit writeable
Indicates whether this stream can be written to.

bit seekable
Indicates whether this stream can be seeked within.

Reading
These methods require that the readable flag be set. Problems with reading result in a
ReadError being thrown.

uint readBlock(void* buffer, uint size)
Read up to size bytes into the buffer and return the number of bytes actually read.

void readExact(void* buffer, uint size)
Read exactly size bytes into the buffer, throwing a ReadError if it is not correct.

The D Programming Language

 166

uint read(ubyte[] buffer)
Read a block of data big enough to fill the given array and return the actual number of
bytes read. Unfilled bytes are not modified.

void read(out byte x)
void read(out ubyte x)
void read(out short x)
void read(out ushort x)
void read(out int x)
void read(out uint x)
void read(out long x)
void read(out ulong x)
void read(out float x)
void read(out double x)
void read(out real x)
void read(out ireal x)
void read(out creal x)
void read(out char x)
void read(out wchar x)
void read(out char[] s)
void read(out wchar[] s)

Read a basic type or counted string, throwing a ReadError if it could not be read.
Outside of byte, ubyte, and char, the format is implementation-specific and should not
be used except as opposite actions to write.

char[] readLine()
wchar[] readLineW()

Read a line that is terminated with some combination of carriage return and line feed
or end-of-file. The terminators are not included. The wchar version is identical.

char[] readString(uint length)
Read a string of the given length, throwing ReadError if there was a problem.

wchar[] readStringW(uint length)
Read a string of the given length, throwing ReadError if there was a problem. The
file format is implementation-specific and should not be used except as opposite
actions to write.

char getc()
wchar getcw()

Read and return the next character in the stream. This is the only method that will
handle ungetc properly. getcw's format is implementation-specific.

char ungetc(char c)
wchar ungetcw(wchar c)

Push a character back onto the stream. They will be returned in first-in last-out order
from getc/getcw.

int scanf(char[] fmt, ...)
int vscanf(char[] fmt, va_list args)

Scan a string from the input using a similar form to C's scanf.

Writing
These methods require that the writeable flag be set. Problems with writing result in a
WriteError being thrown.

uint writeBlock(void* buffer, uint size)
Write up to size bytes from buffer in the stream, returning the actual number of bytes
that were written.

The D Programming Language

 167

void writeExact(void* buffer, uint size)
Write exactly size bytes from buffer, or throw a WriteError if that could not be done.

uint write(ubyte[] buffer)
Write as much of the buffer as possible, returning the number of bytes written.

void write(byte x)
void write(ubyte x)
void write(short x)
void write(ushort x)
void write(int x)
void write(uint x)
void write(long x)
void write(ulong x)
void write(float x)
void write(double x)
void write(real x)
void write(ireal x)
void write(creal x)
void write(char x)
void write(wchar x)
void write(char[] s)
void write(wchar[] s)

Write a basic type or counted string. Outside of byte, ubyte, and char, the format is
implementation-specific and should only be used in conjunction with read.

void writeLine(char[] s)
Write a line of text, appending the line with an operating-system-specific line ending.

void writeLineW(wchar[] s)
Write a line of text, appending the line with an operating-system-specific line ending.
The format is implementation-specific.

void writeString(char[] s)
Write a string of text, throwing WriteError if it could not be fully written.

void writeStringW(wchar[] s)
Write a string of text, throwing WriteError if it could not be fully written. The format
is implementation-dependent.

uint printf(char[] format, ...)
uint vprintf(char[] format, va_list args)

Print a formatted string into the stream using printf-style syntax, returning the number
of bytes written.

void copyFrom(Stream s)
Copies all data from s into this stream. This may throw ReadError or WriteError on
failure. This restores the file position of s so that it is unchanged.

void copyFrom(Stream s, uint count)
Copy a specified number of bytes from the given stream into this one. This may throw
ReadError or WriteError on failure. Unlike the previous form, this doesn't restore
the file position of s.

Seeking
These methods require that the seekable flag be set. Problems with seeking result in a
SeekError being thrown.

ulong seek(long offset, SeekPos whence)
Change the current position of the stream. whence is either SeekPos.Set, in which case
the offset is an absolute index from the beginning of the stream, SeekPos.Current, in

The D Programming Language

 168

which case the offset is a delta from the current position, or SeekPos.End, in which
case the offset is a delta from the end of the stream (negative or zero offsets only make
sense in that case). This returns the new file position.

ulong seekSet(long offset)
ulong seekCur(long offset)
ulong seekEnd(long offset)

Aliases for their normal seek counterparts.
ulong position()
void position(ulong pos)

Retrieve or set the file position, identical to calling seek(0, SeekPos.Current) or
seek(pos, SeekPos.Set) respectively.

ulong size()
Retrieve the size of the stream in bytes.

bit eof()
Return whether the current file position is the same as the end of the file. This does not
require actually reading past the end of the file, as with stdio.

char[] toString()
Read the entire stream and return it as a string.

uint toHash()
Get a hash of the stream by reading each byte and using it in a CRC-32 checksum.

class File : Stream

This subclass is for file system streams.
this()
this(char[] filename)
this(char[] filename, FileMode mode)

Create the stream with no open file, an open file in read and write mode, or an open
file with explicit file mode. mode, if given, is a combination of FileMode.In
(indicating a file that can be read) and FileMode.Out (indicating a file that can be
written). If the file does not exist, it is created.

void open(char[] filename)
void open(char[] filename, FileMode mode)

Open a file for the stream, in an identical manner to the constructors.
void create(char[] filename)
void create(char[] filename, FileMode mode)

Create a file for the stream.
void close()

Close the current file if it is open; otherwise it does nothing.
uint readBlock(void* buffer, uint size)
uint writeBlock(void* buffer, uint size)
ulong seek(long offset, SeekPos rel)

Overrides of the Stream methods.

class MemoryStream : Stream
This subclass reads and constructs an array of bytes in memory.

this()
this(ubyte[] data)

Create the output buffer and setup for reading, writing, and seeking. The second
constructor loads it with specific input data.

ubyte[] data()
Get the current memory data in total.

The D Programming Language

 169

uint readBlock(void* buffer, uint size)
uint writeBlock(void* buffer, uint size)
ulong seek(long offset, SeekPos rel)
char[] toString()

Overrides of Stream methods.

class SliceStream : Stream
This subclass slices off a portion of another stream, making seeking relative to the
boundaries of the slice. It could be used to section a large file into a set of smaller
files, such as with tar archives.

this(Stream base, int low)
Indicate both the base stream to use for reading from and the low part of the slice. The
high part of the slice is dependent upon the end of the base stream, so that if you write
beyond the end it resizes the stream normally.

this(Stream base, int low, int high)
Indicate the high index as well. Attempting to read or write past the high index results
in the end being clipped off.

uint readBlock(void* buffer, uint size)
uint writeBlock(void* buffer, uint size)
ulong seek(long offset, SeekPos rel)

Overrides of Stream methods.

string

To copy or not to copy?
When a function takes a string as a parameter, and returns a string, is that string the same as
the input string, modified in place, or is it a modified copy of the input string? The D array
convention is "copy-on-write". This means that if no modifications are done, the original
string (or slices of it) can be returned. If any modifications are done, the returned string is a
copy.
class StringException

Thrown on errors in string functions.
const char[] hexdigits;

"0123456789ABCDEF"
const char[] digits;

"0123456789"
const char[] octdigits;

"01234567"
const char[] lowercase;

"abcdefghijklmnopqrstuvwxyz"
const char[] uppercase;

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
const char[] letters;

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
const char[] whitespace;

" \t\v\r\n\f"
long atoi(char[] s)

Convert string to integer.
real atof(char[] s)

Convert string to real.

The D Programming Language

 170

int cmp(char[] s1, char[] s2)
Compare two strings. Returns:
<0 for (s1 < s2)
=0 for (s1 == s2)
>0 for (s1 > s2)

int icmp(char[] s1, char[] s2)
Same as cmp() but case insensitive.

char* toCharz(char[] string)
Converts a D array of chars to a C-style 0 terminated string.

int find(char[] s, char c)
Find first occurrance of c in string s. Return index in s where it is found. Return -1 if
not found.

int rfind(char[] s, char c)
Find last occurrance of c in string s. Return index in s where it is found. Return -1 if
not found.

int find(char[] s, char[] sub)
Find first occurrance of sub[] in string s[]. Return index in s[] where it is found.
Return -1 if not found.

int rfind(char[] s, char[] sub)
Find last occurrance of sub in string s. Return index in s where it is found. Return -1 if
not found.

char[] tolower(char[] s)
Convert string to lower case.

char[] toupper(char[] s)
Convert string to upper case.

char[] capitalize(char[] s)
Capitalize first character of string.

char[] capwords(char[] s)
Capitalize all words in string. Remove leading and trailing whitespace. Replace all
sequences of whitespace with a single space.

char[] join(char[][] words, char[] sep)
Concatenate all the strings together into one string; use sep[] as the separator.

char[][] split(char[] s)
Split s[] into an array of words, using whitespace as the delimiter.

char[][] split(char[] s, char[] delim)
Split s[] into an array of words, using delim[] as the delimiter.

char[][] splitlines(char[] s)
Split s[] into an array of lines, using CR, LF, or CR-LF as the delimiter.

char[] stripl(char[] s)
char[] stripr(char[] s)
char[] strip(char[] s)

Strips leading or trailing whitespace, or both.
char[] ljustify(char[] s, int width)
char[] rjustify(char[] s, int width)
char[] center(char[] s, int width)

Left justify, right justify, or center string in field width chars wide.
char[] zfill(char[] s, int width)

Same as rjustify(), but fill with '0's.
char[] replace(char[] s, char[] from, char[] to)

Replace occurrences of from[] with to[] in s[].
char[] replaceSlice(char[] string, char[] slice, char[] replacement)

The D Programming Language

 171

Given a string[] with a slice[] into it, replace slice[] with replacement[].
char[] insert(char[] s, int index, char[] sub)

Insert sub[] into s[] at location index.
int count(char[] s, char[] sub)

Count up all instances of sub[] in s[].
char[] expandtabs(char[] s, int tabsize)

Replace tabs with the appropriate number of spaces. tabsize is the distance between
tab stops.

char[] maketrans(char[] from, char[] to)
Construct translation table for translate().

char[] translate(char[] s, char[] transtab, char[] delchars)
Translate characters in s[] using table created by maketrans(). Delete chars in
delchars[].

char[] toString(uint u)
Convert uint to string.

char[] toString(char* s)
Convert C-style 0 terminated string to D string.

system

thread
The thread module defines the class Thread. Thread is the basis for writing multithreaded
applications. Each thread has a unique instance of class Thread associated with it. It is
important to use the Thread class to create and manage threads as the garbage collector needs
to know about all the threads.
typedef ... thread_hdl

The type of the thread handle used by the operating system.
class Thread

One for each thread.
class ThreadError

Thrown for errors.
The members of Thread are:
this()

Constructor used by classes derived from Thread that override main().
this(int (*fp)(void *), void *arg)

Constructor used by classes derived from Thread that override run().
this(int delegate() dg)

Constructor used by classes derived from Thread that override run().
thread_hdl hdl;

The handle to this thread assigned by the operating system. This is set to thread_id.init
if the thread hasn't been started yet.

void start();
Create a new thread and start it running. The new thread initializes itself and then calls
run(). start() can only be called once.

int run(void *p);
Entry point for a thread. If not overridden, it calls the function pointer fp and argument
arg passed in the constructor, or the delegate dg. The return value is the thread exit
code, which is normally 0.

void wait();

The D Programming Language

 172

Wait for this thread to terminate. Throws ThreadError if the thread hasn't begun yet
or has already terminated or is called on itself.

void wait(unsigned milliseconds);
Wait for this thread to terminate or until milliseconds time has elapsed, whichever
occurs first. Throws ThreadError if the thread hasn't begun yet or has already
terminated or is called on itself.

TS getState();
Returns the state of the thread. The state is one of the following:

TS Description
INITIAL The thread hasn't been started yet.
RUNNING The thread is running or paused.
TERMINATED The thread has ended.

void setPriority(PRIORITY *p);
Adjust the priority of this thread.
PRIORITY Description
INCREASE Increase thread priority
DECREASE Decrease thread priority
IDLE Assign thread low priority
CRITICAL Assign thread high priority

static Thread getThis();
Returns a reference to the Thread for the thread that called the function.

static Thread[] getAll();
Returns an array of all the threads currently running.

void pause();
Suspend execution of this thread.

void resume();
Resume execution of this thread.

static void pauseAll();
Suspend execution of all threads but this thread.

static void resumeAll();
Resume execution of all paused threads.

static void yield();
Give up the remainder of this thread's time slice.

zip

stdio
int printf(char* format, ...)

C printf() function.

The D Programming Language

 173

D for Win32
This describes the D implementation for 32 bit Windows systems. Naturally, Windows
specific D features are not portable to other platforms.

Instead of the:

 #include <windows.h>

of C, in D there is:
 import windows;

Calling Conventions
In C, the Windows API calling conventions are __stdcall. In D, it is simply:
 extern (Windows)
 {
 ... function declarations ...
 }

The Windows linkage attribute sets both the calling convention and the name mangling
scheme to be compatible with Windows.

For functions that in C would be __declspec(dllimport) or __declspec(dllexport), use the
export attribute:

 export void func(int foo);

If no function body is given, it's imported. If a function body is given, it's exported.

Windows Executables
Windows GUI applications can be written with D. A sample such can be found in
\dmd\samples\d\winsamp.d

These are required:

1. Instead of a main function serving as the entry point, a WinMain function is needed.
2. WinMain must follow this form:
3. import windows;
4.
5. extern (C) void gc_init();
6. extern (C) void gc_term();
7. extern (C) void _minit();
8. extern (C) void _moduleCtor();
9. extern (C) void _moduleUnitTests();
10.
11. extern (Windows)
12. int WinMain(HINSTANCE hInstance,
13. HINSTANCE hPrevInstance,
14. LPSTR lpCmdLine,
15. int nCmdShow)
16. {
17. int result;
18.

The D Programming Language

 174

19. gc_init(); // initialize garbage collector
20. _minit(); // initialize module constructor

table
21.
22. try
23. {
24. _moduleCtor(); // call module constructors
25. _moduleUnitTests(); // run unit tests (optional)
26.
27. result = doit(); // insert user code here
28. }
29.
30. catch (Object o) // catch any uncaught exceptions
31. {
32. MessageBoxA(null, (char *)o.toString(), "Error",
33. MB_OK | MB_ICONEXCLAMATION);
34. result = 0; // failed
35. }
36.
37. gc_term(); // run finalizers; terminate garbage

collector
38. return result;
39. }

The doit() function is where the user code goes, the rest of WinMain is boilerplate to
initialize and shut down the D runtime system.

40. A .def (Module Definition File) with at least the following two lines in it:
41. EXETYPE NT
42. SUBSYSTEM WINDOWS

Without those, Win32 will open a text console window whenever the application is
run.

43. The presence of WinMain() is recognized by the compiler causing it to emit a
reference to __acrtused and the phobos.lib runtime library.

DLLs (Dynamic Link Libraries)
DLLs can be created in D in roughly the same way as in C. A DllMain() is required, looking
like:
 import windows;
 HINSTANCE g_hInst;

 extern (C)
 {
 void gc_init();
 void gc_term();
 void _minit();
 void _moduleCtor();
 void _moduleUnitTests();
 }

 extern (Windows)

The D Programming Language

 175

 BOOL DllMain(HINSTANCE hInstance, ULONG ulReason, LPVOID
pvReserved)
 {
 switch (ulReason)
 {
 case DLL_PROCESS_ATTACH:
 gc_init(); // initialize GC
 _minit(); // initialize module list
 _moduleCtor(); // run module constructors
 _moduleUnitTests(); // run module unit
tests
 break;

 case DLL_PROCESS_DETACH:
 gc_term(); // shut down GC
 break;

 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 // Multiple threads not supported yet
 return false;
 }
 g_hInst=hInstance;
 return true;
 }

Notes:

• The _moduleUnitTests() call is optional.
• It's a little crude, I hope to improve it.
• The presence of DllMain() is recognized by the compiler causing it to emit a reference

to __acrtused_dll and the phobos.lib runtime library.

Link with a .def (Module Definition File) along the lines of:
 LIBRARY MYDLL
 DESCRIPTION 'My DLL written in D'

 EXETYPE NT
 CODE PRELOAD DISCARDABLE
 DATA PRELOAD SINGLE

 EXPORTS
 DllGetClassObject @2
 DllCanUnloadNow @3
 DllRegisterServer @4
 DllUnregisterServer @5

The functions in the EXPORTS list are for illustration. Replace them with the actual exported
functions from MYDLL.

Memory Allocation
D DLLs use garbage collected memory management. The question is what happens when
pointers to allocated data cross DLL boundaries? Other DLLs, or callers to a D DLL, may
even be written in another language and may have no idea how to interface with D's garbage
collector.

There are many approaches to solving this problem. The most practical approaches are to
assume that other DLLs have no idea about D. To that end, one of these should work:

The D Programming Language

 176

• Do not return pointers to D gc allocated memory to the caller of the DLL. Instead,
have the caller allocate a buffer, and have the DLL fill in that buffer.

• Retain a pointer to the data within the D DLL so the GC will not free it. Establish a
protocol where the caller informs the D DLL when it is safe to free the data.

• Use operating system primitives like VirtualAlloc() to allocate memory to be
transferred between DLLs.

• Use COM interfaces, rather than D class objects. D supports the AddRef()/Release()
protocol for COM interfaces. Most languages implemented on Win32 have support for
COM, making it a good choice.

COM Programming
Many Windows API interfaces are in terms of COM (Common Object Model) objects (also
called OLE or ActiveX objects). A COM object is an object who's first field is a pointer to a
vtbl[], and the first 3 entries in that vtbl[] are for QueryInterface(), AddRef(), and Release().

COM objects are analogous to D interfaces. Any COM object can be expressed as a D
interface, and every D object with an interface X can be exposed as a COM object X. This
means that D is compatible with COM objects implemented in other languages.

While not strictly necessary, the Phobos library provides an Object useful as a super class for
all D COM objects, called ComObject. ComObject provides a default implementation for
QueryInterface(), AddRef(), and Release().

Windows COM objects use the Windows calling convention, which is not the default for D,
so COM functions need to have the attribute extern (Windows). So, to write a COM object:

 import com;

 class MyCOMobject : ComObject
 {
 extern (Windows):
 ...
 }

The sample code includes an example COM client program and server DLL.

The D Programming Language

 177

 D vs Other Languages
This table is a quick and rough comparison of various features of D with other languages it is
frequently compared with. While many capabilities are available with libraries, this table is
for features built in to the language itself.

Feature D C C++ C# Java

Garbage Collection Yes No No Yes Yes

Functions

Function delegates Yes No No Yes No

Function overloading Yes No Yes Yes Yes

Out function parameters Yes Yes Yes Yes No

Nested functions Yes No No No No

Function literals Yes No No No No

Dynamic closures Yes No No No No

Covariant return types Yes No Yes No No

Arrays

Lightweight arrays Yes Yes Yes No No

Resizeable arrays Yes No No No No

Arrays of bits Yes No No No No

Built-in strings Yes No No Yes Yes

Array slicing Yes No No No No

Array bounds checking Yes No No Yes Yes

Associative arrays Yes No No No No

Strong typedefs Yes No No No No

Aliases Yes Yes Yes No No

OOP

Object Oriented Yes No Yes Yes Yes

Multiple Inheritance No No Yes No No

Interfaces Yes No Yes Yes Yes

Operator overloading Yes No Yes Yes No

Modules Yes No Yes Yes Yes

Dynamic class loading No No No No Yes

Inner classes No No No No Yes

The D Programming Language

 178

Feature D C C++ C# Java

Covariant return types Yes No Yes No No

Performance

Inline assembler Yes Yes Yes No No

Direct access to hardware Yes Yes Yes No No

Lightweight objects Yes Yes Yes Yes No

Explicit memory allocation control Yes Yes Yes No No

Independent of VM Yes Yes Yes No No

Direct native code gen Yes Yes Yes No No

Templates Yes No Yes No No

Reliability

Design by Contract Yes No No No No

Unit testing Yes No No No No

Static construction order Yes No No Yes Yes

Guaranteed initialization Yes No No Yes Yes

RAII Yes No Yes Yes No

Exception handling Yes No Yes Yes Yes

try-catch-finally blocks Yes No No Yes Yes

Thread synchronization primitives Yes No No Yes Yes

Compatibility

Algol-style syntax Yes Yes Yes Yes Yes

Enumerated types Yes Yes Yes Yes No

Support all C types Yes Yes No No No

Long double floating point Yes Yes Yes No No

Complex and Imaginary Yes Yes No No No

Direct access to C Yes Yes Yes No No

Use existing debuggers Yes Yes Yes No No

Struct member alignment control Yes Yes Yes No No

Generates standard object files Yes Yes Yes No No

Macro preprocessor No Yes Yes No No

Other

Conditional compilation Yes Yes Yes Yes No

The D Programming Language

 179

Notes
Object Oriented

This means support for classes, member functions, inheritance, and virtual function
dispatch.

Inline assembler
Many C and C++ compilers support an inline assembler, but this is not a standard part
of the language, and implementations vary widely in syntax and quality.

Interfaces
Support in C++ for interfaces is weak enough that an IDL (Interface Description
Language) was invented to compensate.

Garbage Collection
The Hans-Boehm garbage collector can be successfully used with C and C++, but it is
not a standard part of the language.

Design by Contract
The Digital Mars C++ compiler supports Design by Contract as an extension.

Strong typedefs
Strong typedefs can be emulated in C/C++ by wrapping a type in a struct. Getting this
to work right requires much tedious programming, and so is considered as not
supported.

Struct member alignment control
Although many C/C++ compilers contain pragmas to specify struct alignment, these
are nonstandard and incompatible from compiler to compiler.

Long double floating point
While the standard for C and C++ specify long doubles, few compilers (besides
Digital Mars C/C++) actually implement 80 bit (or longer) floating point types.

The D Programming Language

 180

Programming in D for C
Programmers

Every experienced C programmer accumulates a series of
idioms and techniques which become second nature.
Sometimes, when learning a new language, those idioms can
be so comfortable it's hard to see how to do the equivalent in
the new language. So here's a collection of common C
techniques, and how to do the corresponding task in D.

Since C does not have object-oriented features, there's a separate section for object-oriented
issues Programming in D for C++ Programmers.

The C preprocessor is covered in The C Preprocessor vs D.

• Getting the Size of a Type
• Get the max and min values of a type
• Primitive Types
• Special Floating Point Values
• Taking the Modulus of a floating point number
• Dealing with NAN's in floating point compares
• Asserts
• Initializing all elements of an array
• Looping through an array
• Creating an array of variable size
• String Concatenation
• Formatted printing
• Forward referencing functions
• Functions that have no arguments
• Labelled break's and continue's
• Goto Statements
• Struct tag name space
• Looking up strings
• Setting struct member alignment
• Anonymous Structs and Unions
• Declaring struct types and variables
• Getting the offset of a struct member
• Union initializations
• Struct initializations
• Array initializations
• Escaped String Literals
• Ascii vs Wide Characters
• Arrays that parallel an enum
• Creating a new typedef'd type
• Comparing structs
• Comparing strings

The D Programming Language

 181

• Sorting arrays
• Volatile memory access
• String literals
• Data Structure Traversal

Getting the Size of a Type

The C Way
 sizeof(int)
 sizeof(char *)
 sizeof(double)
 sizeof(struct Foo)

The D Way

Use the size property:

 int.size
 (char *).size
 double.size
 Foo.size

Get the max and min values of a type

The C Way
 #include <limits.h>
 #include <math.h>

 CHAR_MAX
 CHAR_MIN
 ULONG_MAX
 DBL_MIN

The D Way
 char.max
 char.min
 ulong.max
 double.min

Primitive Types

C to D types
 bool => bit
 char => char
 signed char => byte
 unsigned char => ubyte
 short => short
 unsigned short => ushort
 wchar_t => wchar
 int => int
 unsigned => uint
 long => int

The D Programming Language

 182

 unsigned long => uint
 long long => long
 unsigned long long => ulong
 float => float
 double => double
 long double => extended
 _Imaginary long double => imaginary
 _Complex long double => complex

Although char is an unsigned 8 bit type, and wchar is an unsigned 16 bit type, they have their
own separate types in order to aid overloading and type safety.

Ints and unsigneds in C are of varying size; not so in D.

Special Floating Point Values

The C Way
 #include <fp.h>

 NAN
 INFINITY

 #include <float.h>

 DBL_DIG
 DBL_EPSILON
 DBL_MANT_DIG
 DBL_MAX_10_EXP
 DBL_MAX_EXP
 DBL_MIN_10_EXP
 DBL_MIN_EXP

The D Way
 double.nan
 double.infinity
 double.dig
 double.epsilon
 double.mant_dig
 double.max_10_exp
 double.max_exp
 double.min_10_exp
 double.min_exp

Taking the Modulus of a floating point number

The C Way
 #include <math.h>

 float f = fmodf(x,y);
 double d = fmod(x,y);
 long double e = fmodl(x,y);

The D Programming Language

 183

The D Way

D supports the modulus ('%') operator on floating point operands:

 float f = x % y;
 double d = x % y;
 extended e = x % y;

Dealing with NAN's in floating point compares

The C Way

C doesn't define what happens if an operand to a compare is NAN, and few C compilers
check for it (the Digital Mars C compiler is an exception, DM's compilers do check for NAN
operands).

 #include <math.h>

 if (isnan(x) || isnan(y))
 result = FALSE;
 else
 result = (x < y);

The D Way

D offers a full complement of comparisons and operators that work with NAN arguments.

 result = (x < y); // false if x or y is nan

Assert's are a necessary part of any good defensive coding strategy.

The C Way

C doesn't directly support assert, but does support __FILE__ and __LINE__ from which an
assert macro can be built. In fact, there appears to be practically no other use for __FILE__
and __LINE__.

 #include <assert.h>

 assert(e == 0);

The D Way

D simply builds assert into the language:

 assert(e == 0);

[NOTE: trace functions?]

The D Programming Language

 184

Initializing all elements of an array

The C Way
 #define ARRAY_LENGTH 17
 int array[ARRAY_LENGTH];
 for (i = 0; i < ARRAY_LENGTH; i++)
 array[i] = value;

The D Way
 int array[17];
 array[] = value;

Looping through an array

The C Way

The array length is defined separately, or a clumsy sizeof() expression is used to get the
length.

 #define ARRAY_LENGTH 17
 int array[ARRAY_LENGTH];
 for (i = 0; i < ARRAY_LENGTH; i++)
 func(array[i]);

or:
 int array[17];
 for (i = 0; i < sizeof(array) / sizeof(array[0]); i++)
 func(array[i]);

The D Way

The length of an array is accessible the property "length".

 int array[17];
 for (i = 0; i < array.length; i++)
 func(array[i]);

Creating an array of variable size

The C Way
C cannot do this with arrays. It is necessary to create a separate variable for the length, and
then explicitly manage the size of the array:
 #include <stdlib.h>

 int array_length;
 int *array;
 int *newarray;

 newarray = (int *) realloc(array, (array_length + 1) *
sizeof(int));
 if (!newarray)
 error("out of memory");
 array = newarray;
 array[array_length++] = x;

The D Programming Language

 185

The D Way
D supports dynamic arrays, which can be easilly resized. D supports all the requisite memory
management.
 int array[];

 array[array.length++] = x;

String Concatenation

The C Way

There are several difficulties to be resolved, like when can storage be free'd, dealing with null
pointers, finding the length of the strings, and memory allocation:

 #include <string.h>

 char *s1;
 char *s2;
 char *s;

 // Concatenate s1 and s2, and put result in s
 free(s);
 s = (char *)malloc((s1 ? strlen(s1) : 0) +
 (s2 ? strlen(s2) : 0) + 1);
 if (!s)
 error("out of memory");
 if (s1)
 strcpy(s, s1);
 else
 *s = 0;
 if (s2)
 strcpy(s + strlen(s), s2);

 // Append "hello" to s
 char hello[] = "hello";
 char *news;
 size_t lens = s ? strlen(s) : 0;
 news = (char *)realloc(s, (lens + sizeof(hello) + 1) *
sizeof(char));
 if (!news)
 error("out of memory");
 s = news;
 memcpy(s + lens, hello, sizeof(hello));

The D Way
D overloads the operators ~ and ~= for char and wchar arrays to mean concatenate and
append, respectively:
 char s1[];
 char s2[];
 char s[];

 s = s1 ~ s2;
 s ~= "hello";

The D Programming Language

 186

Formatted printing

The C Way
printf() is the general purpose formatted print routine:
 #include <stdio.h>

 printf("Calling all cars %d times!\n", ntimes);

The D Way
What can we say? printf() rules:
 import stdio;

 printf("Calling all cars %d times!\n", ntimes);

Forward referencing functions

The C Way
Functions cannot be forward referenced. Hence, to call a function not yet encountered in the
source file, it is necessary to insert a function declaration lexically preceding the call.
 void forwardfunc();

 void myfunc()
 {
 forwardfunc();
 }

 void forwardfunc()
 {
 ...
 }

The D Way
The program is looked at as a whole, and so not only is it not necessary to code forward
declarations, it is not even allowed! D avoids the tedium and errors associated with writing
forward referenced function declarations twice. Functions can be defined in any order.
 void myfunc()
 {
 forwardfunc();
 }

 void forwardfunc()
 {
 ...
 }

Functions that have no arguments

The C Way
 void function(void);

The D Way
D is a strongly typed language, so there is no need to explicitly say a function takes no
arguments, just don't declare it has having arguments.

The D Programming Language

 187

 void function()
 {
 ...
 }

Labelled break's and continue's.

The C Way
Break's and continue's only apply to the innermost nested loop or switch, so a multilevel break
must use a goto:
 for (i = 0; i < 10; i++)
 {
 for (j = 0; j < 10; j++)
 {
 if (j == 3)
 goto Louter;
 if (j == 4)
 goto L2;
 }
 L2:
 ;
 }
 Louter:
 ;

The D Way
Break and continue statements can be followed by a label. The label is the label for an
enclosing loop or switch, and the break applies to that loop.
 Louter:
 for (i = 0; i < 10; i++)
 {
 for (j = 0; j < 10; j++)
 {
 if (j == 3)
 break Louter;
 if (j == 4)
 continue Louter;
 }
 }
 // break Louter goes here

Goto Statements

The C Way
The much maligned goto statement is a staple for professional C coders. It's necessary to
make up for sometimes inadequate control flow statements.

The D Way
Many C-way goto statements can be eliminated with the D feature of labelled break and
continue statements. But D is a practical language for practical programmers who know when
the rules need to be broken. So of course D supports the goto!

The D Programming Language

 188

Struct tag name space

The C Way
It's annoying to have to put the struct keyword every time a type is specified, so a common
idiom is to use:
 typedef struct ABC { ... } ABC;

The D Way
Struct tag names are not in a separate name space, they are in the same name space as
ordinary names. Hence:
 struct ABC { ... };

Looking up strings

The C Way
Given a string, compare the string against a list of possible values and take action based on
which one it is. A typical use for this might be command line argument processing.
 #include <string.h>
 void dostring(char *s)
 {
 enum Strings { Hello, Goodbye, Maybe, Max };
 static char *table[] = { "hello", "goodbye", "maybe" };
 int i;

 for (i = 0; i < Max; i++)
 {
 if (strcmp(s, table[i]) == 0)
 break;
 }
 switch (i)
 {
 case Hello: ...
 case Goodbye: ...
 case Maybe: ...
 default: ...
 }
 }

The problem with this is trying to maintain 3 parallel data structures, the enum, the table, and
the switch cases. If there are a lot of values, the connection between the 3 may not be so
obvious when doing maintenance, and so the situation is ripe for bugs. Additionally, if the
number of values becomes large, a binary or hash lookup will yield a considerable
performance increase over a simple linear search. But coding these can be time consuming,
and they need to be debugged. It's typical that such just never gets done.

The D Way
D extends the concept of switch statements to be able to handle strings as well as numbers.
Then, the way to code the string lookup becomes straightforward:
 void dostring(char s[])
 {
 switch (s)
 {
 case "hello": ...
 case "goodbye": ...
 case "maybe": ...
 default: ...

The D Programming Language

 189

 }
 }

Adding new cases becomes easy. The compiler can be relied on to generate a fast lookup
scheme for it, eliminating the bugs and time required in hand-coding one.

Setting struct member alignment

The C Way
It's done through a command line switch which affects the entire program, and woe results if
any modules or libraries didn't get recompiled. To address this, #pragma's are used:
 #pragma pack(1)
 struct ABC
 {
 ...
 };
 #pragma pack()

But #pragmas are nonportable both in theory and in practice from compiler to compiler.

The D Way
Clearly, since much of the point to setting alignment is for portability of data, a portable
means of expressing it is necessary.
 struct ABC
 {
 int z; // z is aligned to the default

 align 1 int x; // x is byte aligned
 align 4
 {
 ... // declarations in {} are dword
aligned
 }
 align 2: // switch to word alignment
from here on

 int y; // y is word aligned
 }

Anonymous Structs and Unions
Sometimes, it's nice to control the layout of a struct with nested structs and unions.

The C Way
C doesn't allow anonymous structs or unions, which means that dummy tag names and
dummy members are necessary:
 struct Foo
 { int i;
 union Bar
 {
 struct Abc { int x; long y; } _abc;
 char *p;
 } _bar;
 };

 #define x _bar._abc.x
 #define y _bar._abc.y
 #define p _bar.p

The D Programming Language

 190

 struct Foo f;

 f.i;
 f.x;
 f.y;
 f.p;

Not only is it clumsy, but using macros means a symbolic debugger won't understand what is
being done, and the macros have global scope instead of struct scope.

The D Way
Anonymous structs and unions are used to control the layout in a more natural manner:
 struct Foo
 { int i;
 union
 {
 struct { int x; long y; }
 char *p;
 }
 }

 Foo f;

 f.i;
 f.x;
 f.y;
 f.p;

Declaring struct types and variables.

The C Way
Is to do it in one statement ending with a semicolon:
 struct Foo { int x; int y; } foo;

Or to separate the two:
 struct Foo { int x; int y; }; // note terminating ;
 struct Foo foo;

The D Way
Struct definitions and declarations can't be done in the same statement:
 struct Foo { int x; int y; } // note there is no
terminating ;
 Foo foo;

which means that the terminating ; can be dispensed with, eliminating the confusing
difference between struct {} and function & block {} in how semicolons are used.

Getting the offset of a struct member.

The C Way
Naturally, another macro is used:
 #include <stddef>
 struct Foo { int x; int y; };

 off = offsetof(Foo, y);

The D Programming Language

 191

The D Way
An offset is just another property:
 struct Foo { int x; int y; }

 off = Foo.y.offset;

Union initializations.

The C Way
Unions are initialized using the "first member" rule:
 union U { int a; long b; };
 union U x = { 5 }; // initialize member 'a' to 5

Adding union members or rearranging them can have disastrous consequences for any
initializers.

The D Way
In D, which member is being initialized is mentioned explicitly:
 union U { int a; long b; }
 U x = { a:5 }

avoiding the confusion and maintenance problems.

Struct initializations.

The C Way
Members are initialized by their position within the {}'s:
 struct S { int a; int b; };
 struct S x = { 5, 3 };

This isn't much of a problem with small structs, but when there are numerous members, it
becomes tedious to get the initializers carefully lined up with the field declarations. Then, if
members are added or rearranged, all the initializations have to be found and modified
appropriately. This is a minefield for bugs.

The D Way
Member initialization is done explicitly:
 struct S { int a; int b; }
 S x = { b:3, a:5 }

The meaning is clear, and there no longer is a positional dependence.

Array initializations.

The C Way
C initializes array by positional dependence:
 int a[3] = { 3,2,2 };

Nested arrays may or may not have the { }:
 int b[3][2] = { 2,3, {6,5}, 3,4 };

The D Way
D does it by positional dependence too, but an index can be used as well: The following all
produce the same result:

The D Programming Language

 192

 int a[3] = [3, 2, 0];
 int a[3] = [3, 2]; // unsupplied initializers are 0,
just like in C
 int a[3] = [2:0, 0:3, 1:2];
 int a[3] = [2:0, 0:3, 2]; // if not supplied, the index is the
previous
 // one plus one.

This can be handy if the array will be indexed by an enum, and the order of enums may be
changed or added to:
 enum color { black, red, green }
 int c[3] = [black:3, green:2, red:5];

Nested array initializations must be explicit:
 int b[3][2] = [[2,3], [6,5], [3,4]];

 int b[3][2] = [[2,6,3],[3,5,4]]; // error

Escaped String Literals

The C Way
C has problems with the DOS file system because a \ is an escape in a string. To specifiy file
c:\root\file.c:
 char file[] = "c:\\root\\file.c";

This gets even more unpleasant with regular expressions. Consider the escape sequence to
match a quoted string:
 /"[^\\]*(\\.[^\\]*)*"/

In C, this horror is expressed as:

 char quoteString[] = "\"[^\\\\]*(\\\\.[^\\\\]*)*\"";

The D Way
Within strings, it is WYSIWYG (what you see is what you get). Escapes are in separate
strings. So:
 char file[] = 'c:\root\file.c';
 char quoteString[] = \" '[^\\]*(\\.[^\\]*)*' \";

The famous hello world string becomes:
 char hello[] = "hello world" \n;

Ascii vs Wide Characters

Modern programming requires that wchar strings be supported in an easy way, for
internationalization of the programs.

The C Way
C uses the wchar_t and the L prefix on strings:
 #include <wchar.h>
 char foo_ascii[] = "hello";
 wchar_t foo_wchar[] = L"hello";

Things get worse if code is written to be both ascii and wchar compatible. A macro is used to
switch strings from ascii to wchar:
 #include <tchar.h>
 tchar string[] = TEXT("hello");

The D Programming Language

 193

The D Way
The type of a string is determined by semantic analysis, so there is no need to wrap strings in
a macro call:
 char foo_ascii[] = "hello"; // string is taken to be ascii
 wchar foo_wchar[] = "hello"; // string is taken to be wchar

Arrays that parallel an enum

The C Way
Consider:
 enum COLORS { red, blue, green, max };
 char *cstring[max] = {"red", "blue", "green" };

This is fairly easy to get right because the number of entries is small. But suppose it gets to be
fairly large. Then it can get difficult to maintain correctly when new entries are added.

The D Way
 enum COLORS { red, blue, green }

 char cstring[COLORS.max + 1][] =
 [
 COLORS.red : "red",
 COLORS.blue : "blue",
 COLORS.green : "green",
];

Not perfect, but better.

Creating a new typedef'd type

The C Way
Typedef's in C are weak, that is, they really do not introduce a new type. The compiler doesn't
distinguish between a typedef and its underlying type.
 typedef void *Handle;
 void foo(void *);
 void bar(Handle);

 Handle h;
 foo(h); // coding bug not caught
 bar(h); // ok

The C solution is to create a dummy struct whose sole purpose is to get type checking and
overloading on the new type.
 struct Handle__ { void *value; }
 typedef struct Handle__ *Handle;
 void foo(void *);
 void bar(Handle);

 Handle h;
 foo(h); // syntax error
 bar(h); // ok

Having a default value for the type involves defining a macro, a naming convention, and then
pedantically following that convention:
 #define HANDLE_INIT ((Handle)-1)

The D Programming Language

 194

 Handle h = HANDLE_INIT;
 h = func();
 if (h != HANDLE_INIT)
 ...

For the struct solution, things get even more complex:
 struct Handle__ HANDLE_INIT;

 void init_handle() // call this function upon startup
 {
 HANDLE_INIT.value = (void *)-1;
 }

 Handle h = HANDLE_INIT;
 h = func();
 if (memcmp(&h,&HANDLE_INIT,sizeof(Handle)) != 0)
 ...

There are 4 names to remember: Handle, HANDLE_INIT, struct Handle__, value.

The D Way
No need for idiomatic constructions like the above. Just write:
 typedef void *Handle;
 void foo(void *);
 void bar(Handle);

 Handle h;
 foo(h); // syntax error
 bar(h); // ok

To handle a default value, add an initializer to the typedef, and refer to it with the .init
property:
 typedef void* Handle = cast(void*)(-1);
 Handle h;
 h = func();
 if (h != Handle.init)
 ...

There's only one name to remember: Handle.

Comparing structs

The C Way
While C defines struct assignment in a simple, convenient manner:
 struct A x, y;
 ...
 x = y;

it does not for struct comparisons. Hence, to compare two struct instances for equality:
 #include <string.h>

 struct A x, y;
 ...
 if (memcmp(&x, &y, sizeof(struct A)) == 0)
 ...

The D Programming Language

 195

Note the obtuseness of this, coupled with the lack of any kind of help from the language with
type checking.

There's a nasty bug lurking in the memcmp(). The layout of a struct, due to alignment, can
have 'holes' in it. C does not guarantee those holes are assigned any values, and so two
different struct instances can have the same value for each member, but compare different
because the holes contain different garbage.

The D Way
D does it the obvious, straightforward way:
 A x, y;
 ...
 if (x == y)
 ...

Comparing strings

The C Way
The library function strcmp() is used:
 char string[] = "hello";

 if (strcmp(string, "betty") == 0) // do strings match?
 ...

C uses 0 terminated strings, so the C way has an inherent inefficiency in constantly scanning
for the terminating 0.

The D Way
Why not use the == operator?
 char[] string = "hello";

 if (string == "betty")
 ...

D strings have the length stored separately from the string. Thus, the implementation of string
compares can be much faster than in C (the difference being equivalent to the difference in
speed between the C memcmp() and strcmp()).

D supports comparison operators on strings, too:

 char[] string = "hello";

 if (string < "betty")
 ...

which is useful for sorting/searching.

The D Programming Language

 196

Sorting arrays

The C Way
Although many C programmers tend to reimplmement bubble sorts over and over, the right
way to sort in C is to use qsort():
 int compare(const void *p1, const void *p2)
 {
 type *t1 = (type *)p1;
 type *t1 = (type *)p2;

 return *t1 - *t2;
 }

 type array[10];
 ...
 qsort(array, sizeof(array)/sizeof(array[0]), sizeof(array[0]),
compare);

A compare() must be written for each type, and much careful typo-prone code needs to be
written to make it work.

The D Way
Sorting couldn't be easier:
 type[] array;
 ...
 array.sort; // sort array in-place

Volatile memory access

The C Way
To access volatile memory, such as shared memory or memory mapped I/O, a pointer to
volatile is created:
 volatile int *p = address;

 i = *p;

The D Way
D has volatile as a statement type, not as a type modifier:
 int* p = address;

 volatile { i = *p; }

String literals

The C Way
String literals in C cannot span multiple lines, so to have a block of text it is necessary to use \
line splicing:
 "This text spans\n\
 multiple\n\
 lines\n"

The D Programming Language

 197

If there is a lot of text, this can wind up being tedious.

The D Way
String literals can span multiple lines, as in:
 "This text spans
 multiple
 lines
 "

So blocks of text can just be cut and pasted into the D source.

Data Structure Traversal

The C Way
Consider a function to traverse a recursive data structure. In this example, there's a simple
symbol table of strings. The data structure is an array of binary trees. The code needs to do an
exhaustive search of it to find a particular string in it, and determine if it is a unique instance.

To make this work, a helper function membersearchx is needed to recursively walk the trees.
The helper function needs to read and write some context outside of the trees, so a custom
struct Paramblock is created and a pointer to it is used to maximize efficiency.

 struct Symbol
 { char *id;
 struct Symbol *left;
 struct Symbol *right;
 };

 struct Paramblock
 { char *id;
 struct Symbol *sm;
 };

 static void membersearchx(struct Paramblock *p, struct Symbol *s)
 {
 while (s)
 {
 if (strcmp(p->id,s->id) == 0)
 {
 if (p->sm)
 error("ambiguous member %s\n",p->id);
 p->sm = s;
 }

 if (s->left)
 membersearchx(p,s->left);
 s = s->right;
 }
 }

 struct Symbol *symbol_membersearch(Symbol *table[], int tablemax, char
*id)
 {
 struct Paramblock pb;
 int i;

The D Programming Language

 198

 pb.id = id;
 pb.sm = NULL;
 for (i = 0; i < tablemax; i++)
 {
 membersearchx(pb, table[i]);
 }
 return pb.sm;
 }

The D Way
This is the same algorithm in D, and it shrinks dramatically. Since nested functions have
access to the lexically enclosing function's variables, there's no need for a Paramblock or to
deal with its bookkeeping details. The nested helper function is contained wholly within the
function that needs it, improving locality and maintainability.

The performance of the two versions is indistinguishable.

 class Symbol
 { char[] id;
 Symbol left;
 Symbol right;
 }

 Symbol symbol_membersearch(Symbol[] table, char[] id)
 { Symbol sm;

 void membersearchx(Symbol s)
 {
 while (s)
 {
 if (id == s.id)
 {
 if (sm)
 error("ambiguous member %s\n", id);
 sm = s;
 }

 if (s.left)
 membersearchx(s.left);
 s = s.right;
 }
 }

 for (int i = 0; i < table.length; i++)
 {
 membersearchx(table[i]);
 }
 return sm;
 }

The D Programming Language

 199

Programming in D for C++ Programmers
Every experienced C++ programmer
accumulates a series of idioms and techniques
which become second nature. Sometimes,
when learning a new language, those idioms
can be so comfortable it's hard to see how to
do the equivalent in the new language. So
here's a collection of common C++
techniques, and how to do the corresponding
task in D.

See also: Programming in D for C Programmers

• Defining Constructors
• Base class initialization
• Comparing structs
• Creating a new typedef'd type
• Friends
• Operator overloading
• Namespace using declarations
• RAII (Resource Acquisition Is Initialization)
• Dynamic Closures

Defining constructors

The C++ Way
Constructors have the same name as the class:
 class Foo
 {
 Foo(int x);
 };

The D Way
Constructors are defined with the this keyword:
 class Foo
 {
 this(int x) { }
 }

which reflects how they are used in D.

The D Programming Language

 200

Base class initialization

The C++ Way
Base constructors are called using the base initializer syntax.
 class A { A() {... } };
 class B : A
 {
 B(int x)
 : A() // call base constructor
 { ...
 }
 };

The D Way
The base class constructor is called with the super syntax:
 class A { this() { ... } }
 class B : A
 {
 this(int x)
 { ...
 super(); // call base constructor
 ...
 }
 }

It's superior to C++ in that the base constructor call can be flexibly placed anywhere in the
derived constructor. D can also have one constructor call another one:
 class A
 { int a;
 int b;
 this() { a = 7; b = foo(); }
 this(int x)
 {
 this();
 a = x;
 }
 }

Members can also be initialized to constants before the constructor is ever called, so the above
example is equivalently written as:
 class A
 { int a = 7;
 int b;
 this() { b = foo(); }
 this(int x)
 {
 this();
 a = x;
 }
 }

Comparing structs

The C++ Way
While C++ defines struct assignment in a simple, convenient manner:

The D Programming Language

 201

 struct A x, y;
 ...
 x = y;

it does not for struct comparisons. Hence, to compare two struct instances for equality:
 #include <string.h>

 struct A x, y;

 inline bool operator==(const A& x, const A& y)
 {
 return (memcmp(&x, &y, sizeof(struct A)) == 0);
 }
 ...
 if (x == y)
 ...

Note that the operator overload must be done for every struct needing to be compared, and the
implementation of that overloaded operator is free of any language help with type checking.
The C++ way has an additional problem in that just inspecting the (x == y) does not give a
clue what is actually happening, you have to go and find the particular overloaded
operator==() that applies to verify what it really does.

There's a nasty bug lurking in the memcmp() implementation of operator==(). The layout of a
struct, due to alignment, can have 'holes' in it. C++ does not guarantee those holes are
assigned any values, and so two different struct instances can have the same value for each
member, but compare different because the holes contain different garbage.

To address this, the operator==() can be implemented to do a memberwise compare.
Unfortunately, this is unreliable because (1) if a member is added to the struct definition one
may forget to add it to operator==(), and (2) floating point nan values compare unequal even
if their bit patterns match.

There just is no robust solution in C++.

The D Way
D does it the obvious, straightforward way:
 A x, y;
 ...
 if (x == y)
 ...

Creating a new typedef'd type

The C++ Way
Typedef's in C++ are weak, that is, they really do not introduce a new type. The compiler
doesn't distinguish between a typedef and its underlying type.
 #define HANDLE_INIT ((Handle)(-1))
 typedef void *Handle;
 void foo(void *);
 void bar(Handle);

 Handle h = HANDLE_INIT;
 foo(h); // coding bug not caught

The D Programming Language

 202

 bar(h); // ok

The C++ solution is to create a dummy struct whose sole purpose is to get type checking and
overloading on the new type.
 #define HANDLE_INIT ((void *)(-1))
 struct Handle
 { void *ptr;
 Handle() { ptr = HANDLE_INIT; } // default initializer
 Handle(int i) { ptr = (void *)i; }
 operator void*() { return ptr; } // conversion to underlying
type
 };
 void bar(Handle);

 Handle h;
 bar(h);
 h = func();
 if (h != HANDLE_INIT)
 ...

The D Way
No need for idiomatic constructions like the above. Just write:
 typedef void *Handle = cast(void *)-1;
 void bar(Handle);

 Handle h;
 bar(h);
 h = func();
 if (h != Handle.init)
 ...

Note how a default initializer can be supplied for the typedef as a value of the underlying
type.

Friends

The C++ Way
Sometimes two classes are tightly related but not by inheritance, but need to access each
other's private members. This is done using friend declarations:
 class A
 {
 private:
 int a;

 public:
 int foo(B *j);
 friend class B;
 friend int abc(A *);
 };

 class B
 {
 private:
 int b;

 public:
 int bar(A *j);

The D Programming Language

 203

 friend class A;
 };

 int A::foo(B *j) { return j->b; }
 int B::bar(A *j) { return j->a; }

 int abc(A *p) { return p->a; }

The D Way
In D, friend access is implicit in being a member of the same module. It makes sense that
tightly related classes should be in the same module, so implicitly granting friend access to
other module members solves the problem neatly:
 module X;

 class A
 {
 private:
 static int a;

 public:
 int foo(B j) { return j.b; }
 }

 class B
 {
 private:
 static int b;

 public:
 int bar(A j) { return j.a; }
 }

 int abc(A p) { return p.a; }

The private attribute prevents other modules from accessing the members.

Operator overloading

The C++ Way
Given a struct that creates a new arithmetic data type, it's convenient to overload the
comparison operators so it can be compared against integers:
 struct A
 {
 virtual int operator < (int i);
 virtual int operator <= (int i);
 virtual int operator > (int i);
 virtual int operator >= (int i);

 static int operator < (int i, A *a) { return a > i; }
 static int operator <= (int i, A *a) { return a >= i; }
 static int operator > (int i, A *a) { return a < i; }
 static int operator >= (int i, A *a) { return a <= i; }
 };

A total of 8 functions are necessary, and all the latter 4 do is just rewrite the expression so the
virtual functions can be used. Note the asymmetry between the virtual functions, which have

The D Programming Language

 204

(a < i) as the left operand, and the non-virtual static function necessary to handle (i < a)
operations.

The D Way
D recognizes that the comparison operators are all fundamentally related to each other. So
only one function is necessary:
 struct A
 {
 int cmp(int i);
 }

The compiler automatically interprets all the <, <=, > and >= operators in terms of the cmp
function, as well as handling the cases where the left operand is not an object reference.

Similar sensible rules hold for other operator overloads, making using operator overloading in
D much less tedious and less error prone. Far less code needs to be written to accomplish the
same effect.

Namespace using declarations

The C++ Way
A using-declaration in C++ is used to bring a name from a namespace scope into the current
scope:
 namespace Foo
 {
 int x;
 }
 using Foo::x;

The D Way
D uses modules instead of namespaces and #include files, and alias declarations take the place
of using declarations:
 ---- Module Foo.d ------
 module Foo;
 int x;

 ---- Another module ----
 import Foo;
 alias Foo.x x;

Alias is a much more flexible than the single purpose using declaration. Alias can be used to
rename symbols, refer to template members, refer to nested class types, etc.

RAII (Resource Acquisition Is Initialization)

The C++ Way
In C++, resources like memory, etc., all need to be handled explicitly. Since destructors
automatically get called when leaving a scope, RAII is implemented by putting the resource
release code into the destructor:
 class File

The D Programming Language

 205

 { Handle *h;

 ~File()
 {
 h->release();
 }
 };

The D Way
The bulk of resource release problems are simply keeping track of and freeing memory. This
is handled automatically in D by the garbage collector. The second common resources used
are semaphores and locks, handled automatically with D's synchronized declarations and
statements.

The few RAII issues left are handled by auto classes. Auto classes get their destructors run
when they go out of scope.

 auto class File
 { Handle h;

 ~this()
 {
 h.release();
 }
 }

 void test()
 {
 if (...)
 { auto File f = new File();
 ...
 } // f.~this() gets run at closing brace, even if
 // scope was exited via a thrown exception
 }

Dynamic Closures

The C++ Way
Consider a reusable container class. In order to be reusable, it must support a way to apply
arbitrary code to each element of the container. This is done by creating an apply function that
accepts a function pointer to which is passed each element of the container contents.

A generic context pointer is also needed, represented here by void *p. The example here is of
a trivial container class that holds an array of int's, and a user of that container that computes
the maximum of those int's.

 struct Collection
 {
 int array[10];

 void apply(void *p, void (*fp)(void *, int))
 {
 for (int i = 0; i < sizeof(array)/sizeof(array[0]); i++)
 fp(p, array[i]);

The D Programming Language

 206

 }
 };

 void comp_max(void *p, int i)
 {
 int *pmax = (int *)p;

 if (i > *pmax)
 *pmax = i;
 }

 void func(Collection *c)
 {
 int max = INT_MIN;

 c->apply(&max, comp_max);
 }

The C++ way makes heavy use of pointers and casting. The casting is tedious, error prone,
and loses all type safety.

The D Way
The D version makes use of delegates to transmit context information for the apply function,
and nested functions both to capture context information and to improve locality.
 class Collection
 {
 int[10] array;

 void apply(void delegate(int) fp)
 {
 for (int i = 0; i < array.length; i++)
 fp(array[i]);
 }
 }

 void func(Collection c)
 {
 int max = int.min;

 void comp_max(int i)
 {
 if (i > max)
 max = i;
 }

 c.apply(comp_max);
 }

Pointers are eliminated, as well as casting and generic pointers. The D version is fully type
safe. An alternate method in D makes use of function literals:
 void func(Collection c)
 {
 int max = int.min;

 c.apply(delegate(int i) { if (i > max) max = i; });
 }

eliminating the need to create irrelevant function names.

The D Programming Language

 207

The C Preprocessor Versus D
Back when C was invented, compiler technology was primitive. Installing a text macro
preprocessor onto the front end was a straightforward and easy way to add many powerful
features. The increasing size & complexity of programs have illustrated that these features
come with many inherent problems. D doesn't have a preprocessor; but D provides a more
scalable means to solve the same problems.

• Header Files
• #pragma once
• #pragma pack
• Macros
• Conditional Compilation
• Code Factoring

Header Files

The C Preprocessor Way
C and C++ rely heavilly on textual inclusion of header files. This frequently results in the
compiler having to recompile tens of thousands of lines of code over and over again for every
source file, an obvious source of slow compile times. What header files are normally used for
is more appropriately done doing a symbolic, rather than textual, insertion. This is done with
the import statement. Symbolic inclusion means the compiler just loads an already compiled
symbol table. The needs for macro "wrappers" to prevent multiple #inclusion, funky #pragma
once syntax, and incomprehensible fragile syntax for precompiled headers are simply
unnecessary and irrelevant to D.
 #include <stdio.h>

The D Way
D uses symbolic imports:
 import stdio;

#pragma once

The C Preprocessor Way
C header files frequently need to be protected against being #include'd multiple times. To do
it, a header file will contain the line:
 #pragma once

or the more portable:
 #ifndef __STDIO_INCLUDE
 #define __STDIO_INCLUDE
 ... header file contents
 #endif

The D Programming Language

 208

The D Way
Completely unnecessary since D does a symbolic include of import files; they only get
imported once no matter how many times the import declaration appears.

#pragma pack

The C Preprocessor Way
This is used in C to adjust the alignment for structs.

The D Way
For D classes, there is no need to adjust the alignment (in fact, the compiler is free to
rearrange the data fields to get the optimum layout, much as the compiler will rearrange local
variables on the stack frame). For D structs that get mapped onto externally defined data
structures, there is a need, and it is handled with:
 struct Foo
 {
 align (4): // use 4 byte alignment
 ...
 }

Macros
Preprocessor macros add powerful features and flexibility to C. But they have a downside:

• Macros have no concept of scope; they are valid from the point of definition to the end
of the source. They cut a swath across .h files, nested code, etc. When #include'ing
tens of thousands of lines of macro definitions, it becomes problematicalto avoid
inadvertent macro expansions.

• Macros are unknown to the debugger. Trying to debug a program with symbolic data
is undermined by the debugger only knowing about macro expansions, not themacros
themselves.

• Macros make it impossible to tokenize source code, as an earlier macro change can
arbitrarilly redo tokens.

• The purely textual basis of macros leads to arbitrary and inconsistent usage, making
code using macros error prone. (Some attempt to resolve this was introduced with
templates in C++.)

• Macros are still used to make up for deficits in the language's expressive capabiltiy,
such as for "wrappers" around header files.

Here's an enumeration of the common uses for macros, and the corresponding feature in D:

1. Defining literal constants:

The C Preprocessor Way
 #define VALUE 5

The D Way
 const int VALUE = 5;

The D Programming Language

 209

2. Creating a list of values or flags:

The C Preprocessor Way
 int flags:
 #define FLAG_X 0x1
 #define FLAG_Y 0x2
 #define FLAG_Z 0x4
 ...
 flags |= FLAGS_X;

The D Way
 enum FLAGS { X = 0x1, Y = 0x2, Z = 0x4 };
 FLAGS flags;
 ...
 flags |= FLAGS.X;

3. Distinguishing between ascii chars and wchar chars:

The C Preprocessor Way
 #if UNICODE
 #define dchar wchar_t
 #define TEXT(s) L##s
 #else
 #define dchar char
 #define TEXT(s) s
 #endif

 ...
 dchar h[] = TEXT("hello");

The D Way
 import dchar; // contains appropriate typedef for dchar
 ...
 dchar[] h = "hello";

D's optimizer will inline the function, and will do the conversion of the string constant
at compile time.

4. Supporting legacy compilers:

The C Preprocessor Way
 #if PROTOTYPES
 #define P(p) p
 #else
 #define P(p) ()
 #endif
 int func P((int x, int y));

The D Programming Language

 210

The D Way

By making the D compiler open source, it will largely avoid the problem of syntactical
backwards compatibility.

5. Type aliasing:

The C Preprocessor Way
 #define INT int

The D Way
 alias int INT;

6. Using one header file for both declaration and definition:

The C Preprocessor Way
 #define EXTERN extern
 #include "declations.h"
 #undef EXTERN
 #define EXTERN
 #include "declations.h"

In declarations.h:

 EXTERN int foo;

The D Way

The declaration and the definition are the same, so there is no need to muck with the
storage class to generate both a declaration and a definition from the same source.

7. Lightweight inline functions:

The C Preprocessor Way
 #define X(i) ((i) = (i) / 3)

The D Way
 int X(inout int i) { return i = i / 3; }

The compiler optimizer will inline it; no efficiency is lost.

8. Assert function file and line number information:

The D Programming Language

 211

The C Preprocessor Way
 #define assert(e) ((e) || _assert(__LINE__, __FILE__))

The D Way

assert() is a built-in expression primitive. Giving the compiler such knowledge of
assert() also enables the optimizer to know about things like the _assert() function
never returns.

9. Setting function calling conventions:

The C Preprocessor Way
 #ifndef _CRTAPI1
 #define _CRTAPI1 __cdecl
 #endif
 #ifndef _CRTAPI2
 #define _CRTAPI2 __cdecl
 #endif

 int _CRTAPI2 func();

The D Way

Calling conventions can be specified in blocks, so there's no need to change it for
every function:

 extern (Windows)
 {
 int onefunc();
 int anotherfunc();
 }

10. Hiding __near or __far pointer wierdness:

The C Preprocessor Way
 #define LPSTR char FAR *

The D Way

D doesn't support 16 bit code, mixed pointer sizes, and different kinds of pointers, and
so the problem is just irrelevant.

11. Simple generic programming:

The D Programming Language

 212

The C Preprocessor Way

Selecting which function to use based on text substitution:

 #ifdef UNICODE
 int getValueW(wchar_t *p);
 #define getValue getValueW
 #else
 int getValueA(char *p);
 #define getValue getValueA
 #endif

The D Way

D enables declarations of symbols that are aliases of other symbols:

 version (UNICODE)
 {
 int getValueW(wchar[] p);
 alias getValueW getValue;
 }
 else
 {
 int getValueA(char[] p);
 alias getValueA getValue;
 }

Conditional Compilation

The C Preprocessor Way
Conditional compilation is a powerful feature of the C preprocessor, but it has its downside:

• The preprocessor has no concept of scope. #if/#endif can be interleaved with code in a
completely unstructured and disorganized fashion, making things difficult to follow.

• Conditional compilation triggers off of macros - macros that can conflict with
identifiers used in the program.

• #if expressions are evaluated in subtly different ways than C expressions are.
• The preprocessor language is fundamentally different in concept than C, for example,

whitespace and line terminators mean things to the preprocessor that they do not in C.

The D Way
D supports conditional compilation:

1. Separating version specific functionality into separate modules.
2. The debug statement for enabling/disabling debug harnesses, extra printing, etc.
3. The version statement for dealing with multiple versions of the program generated

from a single set of sources.
4. The if (0) statement.
5. The /+ +/ nesting comment can be used to comment out blocks of code.

The D Programming Language

 213

Code Factoring

The C Preprocessor Way
It's common in a function to have a repetitive sequence of code to be executed in multiple
places. Performance considerations preclude factoring it out into a separate function, so it is
implemented as a macro. For example, consider this fragment from a byte code interpreter:
 unsigned char *ip; // byte code instruction pointer
 int *stack;
 int spi; // stack pointer
 ...
 #define pop() (stack[--spi])
 #define push(i) (stack[spi++] = (i))
 while (1)
 {
 switch (*ip++)
 {
 case ADD:
 op1 = pop();
 op2 = pop();
 result = op1 + op2;
 push(result);
 break;

 case SUB:
 ...
 }
 }

This suffers from numerous problems:

1. The macros must evaluate to expressions and cannot declare any variables. Consider
the difficulty of extending them to check for stack overflow/underflow.

2. The macros exist outside of the semantic symbol table, so remain in scope even
outside of the function they are declared in.

3. Parameters to macros are passed textually, not by value, meaning that the macro
implementation needs to be careful to not use the parameter more than once, and must
protect it with ().

4. Macros are invisible to the debugger, which sees only the expanded expressions.

The D Way
D neatly addresses this with nested functions:
 ubyte* ip; // byte code instruction pointer
 int[] stack; // operand stack
 int spi; // stack pointer
 ...

 int pop() { return stack[--spi]; }
 void push(int i) { stack[spi++] = i; }

 while (1)
 {
 switch (*ip++)
 {
 case ADD:
 op1 = pop();
 op2 = pop();
 push(op1 + op2);
 break;

The D Programming Language

 214

 case SUB:
 ...
 }
 }

The problems addressed are:

1. The nested functions have available the full expressive power of D functions. The
array accesses already are bounds checked (adjustable by compile time switch).

2. Nested function names are scoped just like any other name.
3. Parameters are passed by value, so need to worry about side effects in the parameter

expressions.
4. Nested functions are visible to the debugger.

Additionally, nested functions can be inlined by the implementation resulting in the same high
performance that the C macro version exhibits.

The D Programming Language

 215

The D Style
The D Style is a set of style conventions for writing D programs. The D Style is not enforced
by the compiler, it is purely cosmetic and a matter of choice. Adhering to the D Style,
however, will make it easier for others to work with your D code and easier for you to work
with others' D code. The D Style can form the starting point for a D project style guide
customized for your project team.

White Space

• One statement per line.
• Two or more spaces per indentation level.
• Operators are separated by single spaces from their operands.
• Two blank lines separating function bodies.
• One blank line separating variable declarations from statements in function bodies.

Comments

• Use // comments to document a single line:
• statement; // comment
• statement; // comment

• Use block comments to document a multiple line block of statements:
• /*
• * comment
• * comment
• */
• statement;
• statement;

• Use nesting comments to 'comment out' a piece of trial code:
• /+++++
• /*
• * comment
• * comment
• */
• statement;
• statement;
• +++++/

Naming Conventions
General

Names formed by joining multiple works should have each word other than the first
capitalized.
 int myFunc();

Module
Module names are all lower case.

The D Programming Language

 216

C Modules
Modules that are interfaces to C functions go into the "c" package, for example:
 import c.stdio;

Module names should be all lower case.
Class, Struct, Union, Enum names

are capitalized.
 class Foo;
 class FooAndBar;

Function names
Function names are not capitalized.
 int done();
 int doneProcessing();

Const names
Are in all caps.

Enum member names
Are in all caps.

Meaningless Type Aliases
Things like:
 alias void VOID;
 alias int INT;
 alias int* pint;

should be avoided.

Declaration Style
Since in D the declarations are left-associative, left justify them:
 int[] x, y; // makes it clear that x and y are the same type
 int** p, q; // makes it clear that p and q are the same type

to emphasize their relationship. Do not use the C style:
 int []x, y; // confusing since y is also an int[]
 int **p, q; // confusing since q is also an int**

Operator Overloading
Operator overloading is a powerful tool to extend the basic types supported by the language.
But being powerful, it has great potential for creating obfuscated code. In particular, the
existing D operators have conventional meanings, such as '+' means 'add' and '<<' means 'shift
left'. Overloading operator '+' with a meaning different from 'add' is arbitrarilly confusing and
should be avoided.

Hungarian Notation
Just say no.

The D Programming Language

 217

Example: wc
This program is the D version of the classic wc (wordcount) C program. It serves to
demonstrate how to read files, do array slicing, and simple symbol table management with
associative arrays.
import stdio;
import file;

int main (char[][] args)
{
 int w_total;
 int l_total;
 int c_total;
 int[char[]] dictionary;

 printf(" lines words bytes file\n");
 for (int i = 1; i < args.length; ++i)
 {
 char[] input;
 int w_cnt, l_cnt, c_cnt;
 int inword;
 int wstart;

 input = File.read(args[i]);

 for (int j = 0; j < input.length; j++)
 { char c;

 c = input[j];
 if (c == "\n")
 ++l_cnt;
 if (c >= "0" && c <= "9")
 {
 }
 else if (c >= "a" && c <= "z" ||
 c >= "A" && c <= "Z")
 {
 if (!inword)
 {
 wstart = j;
 inword = 1;
 ++w_cnt;
 }
 }
 else if (inword)
 { char[] word = input[wstart .. j];

 dictionary[word]++;
 inword = 0;
 }
 ++c_cnt;
 }
 if (inword)
 { char[] word = input[wstart .. input.length];
 dictionary[word]++;
 }
 printf("%8lu%8lu%8lu %s\n", l_cnt, w_cnt, c_cnt, (char *)args[i]);
 l_total += l_cnt;
 w_total += w_cnt;

The D Programming Language

 218

 c_total += c_cnt;
 }

 if (args.length > 2)
 {
 printf("--------------------------------------\n%8lu%8lu%8lu
total",
 l_total, w_total, c_total);
 }

 printf("--------------------------------------\n");
 char[][] keys = dictionary.keys;
 for (int i = 0; i < keys.length; i++)
 { char[] word;

 word = keys[i];
 printf("%3d %.*s\n", dictionary[word], word);
 }
 return 0;
}

The D Programming Language

 219

Compiler for D Programming Language
This is the D compiler for Win32.

Files
\dmd\bin\dmd.exe

D compiler executable
\dmd\bin\shell.exe

Simple command line shell
\dmd\bin\sc.ini

Global compiler settings
\dmd\lib\phobos.lib

D runtime library
\dmd\src\phobos\

D runtime library source
\dmd\src\dmd\

D compiler front end source under dual (GPL and Artistic) license
\dmd\html\d\

Documentation
\dmd\samples\d\

Sample D programs

Requirements

• 32 bit Windows operating system
• D compiler for Win32
• linker and utilities for Win32

Installation
Unzip the files in the root directory. It will create a \dmd directory with all the files in it. All
the tools are command line tools, which means they are run from a console window. Create a
console window in Windows XP by clicking on [Start][Command Prompt].

Example
Run:
 \dmd\bin\shell all.sh

in the \dmd\samples\d directory for several small examples.

Compiler Arguments and Switches
dmd files... -switch...
files...

Extension File Type

none D source files

.d D source files

.obj Object files to link in

.exe Name output executable file

ftp://ftp.digitalmars.com/dmd.zip
ftp://ftp.digitalmars.com/dmc.zip

The D Programming Language

 220

.def module definition file

.res resource file
-c

compile only, do not link
-d

allow deprecated features
-debug

compile in debug code
-debug=level

compile in debug code <= level
-debug=ident

compile in debug code identified by ident
-g

add symbolic debug info
-gt

add trace profiling hooks
-inline

inline expand functions
-Ipath

where to look for imports. path is a ; separated list of paths. Multiple -I's can be used,
and the paths are searched in the same order.

-Llinkerflag
pass linkerflag to the linker, for example, /ma/li

-O
optimize

-oobjdir
write object files to directory objdir instead of to the current directory

-release
compile release version

-unittest
compile in unittest code

-v
verbose

-version=level
compile in version code >= level

-version=ident
compile in version code identified by ident

Linking
Linking is done directly by the dmd compiler after a successful compile. To prevent dmd
from running the linker, use the -c switch.

The programs must be linked with the D runtime library phobos.lib, followed by the C
runtime library snn.lib. This is done automatically as long as the directories for the libraries
are on the LIB environment variable path. A typical way to set LIB would be:

 set LIB=\dmd\lib;\dm\lib

The D Programming Language

 221

Environment Variables
The D compiler dmd uses the following environment variables:
DFLAGS

The value of DFLAGS is treated as if it were appended to the command line to
dmd.exe.

LIB
The linker uses LIB to search for library files. For D, it will normally be set to:
 set LIB=\dmd\lib;\dm\lib

LINKCMD
dmd normally runs the linker by looking for link.exe along the PATH. To use a
specific linker instead, set the LINKCMD environment variable to it. For example:
 set LINKCMD=\dm\bin\link

PATH
If the linker is not found in the same directory as dmd.exe is in, the PATH is searched
for it. Note: other linkers named link.exe will likely not work. Make sure the Digital
Mars link.exe is found first in the PATH before other link.exe's, or use LINKCMD
to specifically identify which linker to use.

SC.INI Initialization File
dmd will look for the initialization file sc.ini in the same directory dmd.exe resides in. If
found, environment variable settings in the file will override any existing settings. This is
handy to make dmd independent of programs with conflicting use of environment variables.

Environment variables follow the [Environment] section heading, in name=value pairs.
Comments are lines that start with ;. For example:

 ; sc.ini file for dmd
 ; Names enclosed by %% are searched for in the existing environemnt
 ; and inserted. The special name %@P% is replaced with the path
 ; to this file.
 [Environment]
 LIB="%@P%\..\lib";\dm\lib
 DFLAGS="-I%@P%\..\src\phobos"
 LINKCMD="%@P%\..\..\dm\bin"

Bugs
These are some of the major bugs:

• The compiler quits on the first error, and sometimes gets the line number wrong.
• The phobos D runtime library is inadequate.
• Need to write a tool to convert C .h files into D imports.
• Array op= operations are not implemented.
• Property gettor/settor not implemented.
• In preconditions and out postconditions for member functions are not inherited.
• It cannot be run from the IDDE.

Feedback
We welcome all feedback - kudos, flames, bugs, suggestions, hints, and most especially
donated code!

The D Programming Language

 222

 Acknowledgements
The following people have contributed to the D language project; with ideas, code, expertise,
marketing, inspiration and moral support.

Bruce Eckel, Eric Engstrom, Jan Knepper, Lubomir Litchev, Pavel Minayev, Paul Nash, Pat
Nelson, Burton Radons, Tim Rentsch, Fabio Riccardi, Bob Taniguchi, John Whited, Peter
Zatloukal

http://www.janknepper.com/

	Overview	11
	Overview	11
	What is D?
	Why D?
	Features To Keep From C/C++
	Features To Drop
	Who D is For
	Who D is Not For

	Major Features of D
	Object Oriented Programming
	Classes
	Operator Overloading

	Productivity
	Modules
	Declaration vs Definition
	Templates
	Associative Arrays
	Real Typedefs
	Bit type

	Functions
	Nested Functions
	Function Literals
	Dynamic Closures
	In, Out, and Inout Parameters

	Arrays
	Strings

	Resource Management
	Garbage Collection
	Explicit Memory Management
	RAII

	Performance
	Lightweight Aggregates
	Inline Assembler

	Reliability
	Contracts
	Unit Tests
	Debug Attributes and Statements
	Exception Handling
	Synchronization
	Support for Robust Techniques
	Compile Time Checks
	Runtime Checking

	Compatibility
	Operator precedence and evaluation rules
	Direct Access to C API's
	Support for all C data types
	OS Exception Handling
	Uses Existing Tools

	Project Management
	Versioning
	Deprecation
	No Warnings

	Sample D Program (sieve.d)

	Lexical
	
	Phases of Compilation
	Source Text
	End of File
	End of Line
	White Space
	Comments
	Identifiers
	String Literals
	Integer Literals
	Floating Literals
	Keywords
	Tokens
	Pragmas

	Modules
	
	Module Declaration
	Import Declaration
	Scope and Modules

	Static Construction and Destruction
	Order of Static Construction
	Order of Static Construction within a Module
	Order of Static Destruction

	Declarations
	
	Declaration Syntax
	Type Defining
	Type Aliasing
	Alias Declarations

	Types
	Basic Data Types
	Integer Promotions
	Usual Arithmetic Conversions

	Properties
	Attributes
	Expressions
	
	Assignment Operator Expressions
	Or Expressions
	Xor Expressions
	And Expressions
	Integer comparisons
	Floating point comparisons
	Notes:

	In Expressions
	New Expressions
	Cast Expressions
	this
	super
	null
	true, false
	Function Literals
	Assert Expressions

	Statements
	Labelled Statements
	Block Statement
	Expression Statement
	Declaration Statement
	If Statement
	While Statement
	Do-While Statement
	For Statement
	Switch Statement
	Continue Statement
	Break Statement
	Return Statement
	Goto Statement
	With Statement
	Synchronize Statement
	Try Statement
	Throw Statement
	Volatile Statement
	Asm Statement

	Arrays
	
	Pointers
	Static Arrays
	Dynamic Arrays

	Array Declarations
	
	Prefix Array Declarations
	Postfix Array Declarations

	Usage
	Slicing
	Array Copying
	Array Setting
	Array Concatenation
	Array Operations
	
	Examples:

	Rectangular Arrays
	Array Properties
	Setting Dynamic Array Length

	Array Bounds Checking
	Array Initialization
	Static Initialization of Static Arrays

	Special Array Types
	Arrays of Bits
	Strings
	printf() and Strings

	Associative Arrays
	Properties
	Associative Array Example: word count

	Structs, Unions, Enums
	Structs, Unions
	Static Initialization of Structs
	Static Initialization of Unions

	Enums
	Enum Properties
	Initialization of Enums

	Classes
	
	Fields
	Super Class
	Constructors
	Destructors
	Static Constructors
	Static Destructor
	Class Invariants
	Unit Tests
	Class Allocators
	Class Deallocators
	Auto Classes

	Interfaces
	Functions
	
	Virtual Functions
	Inline Functions
	Function Overloading
	Function Parameters
	Local Variables

	Nested Functions
	Delegates, Function Pointers, and Dynamic Closures

	Operator Overloading
	Unary Operator Overloading
	Overloadable Unary Operators

	Binary Operator Overloading
	
	Examples
	Rationale

	Future Directions

	Templates
	Instantiation Scope
	Argument Deduction
	Value Parameters
	Specialization
	Limitations

	Contracts
	Assert Contract
	Pre and Post Contracts
	In, Out and Inheritance
	Class Invariants

	Debug and Version
	Predefined Versions
	Specification
	Debug Statement
	Version Statement
	Debug Attribute
	Version Attribute

	Error Handling in D
	The Error Handling Problem
	The D Error Handling Solution

	Garbage Collection
	How Garbage Collection Works
	Interfacing Garbage Collected Objects With Foreign Code
	Pointers and the Garbage Collector
	Working with the Garbage Collector

	Memory Management
	Strings (and Array) Copy-on-Write
	Real Time
	Smooth Operation
	Free Lists
	Reference Counting
	Explicit Class Instance Allocation
	Mark/Release
	RAII (Resource Acquisition Is Initialization)
	Allocating Class Instances On The Stack

	Floating Point
	
	Floating Point Intermediate Values
	Complex and Imaginary types
	Rounding Control
	Exception Flags
	Floating Point Comparisons

	D x86 Inline Assembler
	Labels
	align IntegerExpression
	even
	naked
	db, ds, di, dl, df, dd, de
	Opcodes
	Special Cases

	Operands
	Operand Types
	Struct/Union/Class Member Offsets
	Special Symbols

	Opcodes Supported
	AMD Opcodes Supported

	Interfacing to C
	Interfacing to C++
	Portability Guide
	Embedding D in HTML
	D Runtime Model
	Phobos
	D Runtime Library
	Imports
	Core D: Available on all D implementations
	Standard C: interface to C functions
	Operating System and Hardware: platform specific

	compiler
	conv
	ctype
	date
	file
	gc
	intrinsic
	math
	object
	outbuffer
	path
	process
	random
	regexp
	stdint
	stream
	Reading
	Writing
	Seeking

	string
	To copy or not to copy?

	system
	thread
	zip
	stdio

	D for Win32
	Calling Conventions
	Windows Executables
	DLLs (Dynamic Link Libraries)
	Memory Allocation

	COM Programming

	D vs Other Languages
	Notes

	Programming in D for C Programmers
	
	Getting the Size of a Type
	The C Way
	The D Way

	Get the max and min values of a type
	The C Way
	The D Way

	Primitive Types
	C to D types

	Special Floating Point Values
	The C Way
	The D Way

	Taking the Modulus of a floating point number
	The C Way
	The D Way

	Dealing with NAN's in floating point compares
	The C Way
	The D Way

	Assert's are a necessary part of any good defensive coding strategy.
	The C Way
	The D Way

	Initializing all elements of an array
	The C Way
	The D Way

	Looping through an array
	The C Way
	The D Way

	Creating an array of variable size
	The C Way
	The D Way

	String Concatenation
	The C Way
	The D Way

	Formatted printing
	The C Way
	The D Way

	Forward referencing functions
	The C Way
	The D Way

	Functions that have no arguments
	The C Way
	The D Way

	Labelled break's and continue's.
	The C Way
	The D Way

	Goto Statements
	The C Way
	The D Way

	Struct tag name space
	The C Way
	The D Way

	Looking up strings
	The C Way
	The D Way

	Setting struct member alignment
	The C Way
	The D Way

	Anonymous Structs and Unions
	The C Way
	The D Way

	Declaring struct types and variables.
	The C Way
	The D Way

	Getting the offset of a struct member.
	The C Way
	The D Way

	Union initializations.
	The C Way
	The D Way

	Struct initializations.
	The C Way
	The D Way

	Array initializations.
	The C Way
	The D Way

	Escaped String Literals
	The C Way
	The D Way

	Ascii vs Wide Characters
	The C Way
	The D Way

	Arrays that parallel an enum
	The C Way
	The D Way

	Creating a new typedef'd type
	The C Way
	The D Way

	Comparing structs
	The C Way
	The D Way

	Comparing strings
	The C Way
	The D Way

	Sorting arrays
	The C Way
	The D Way

	Volatile memory access
	The C Way
	The D Way

	String literals
	The C Way
	The D Way

	Data Structure Traversal
	The C Way
	The D Way

	Programming in D for C++ Programmers
	
	Defining constructors
	The C++ Way
	The D Way

	Base class initialization
	The C++ Way
	The D Way

	Comparing structs
	The C++ Way
	The D Way

	Creating a new typedef'd type
	The C++ Way
	The D Way

	Friends
	The C++ Way
	The D Way

	Operator overloading
	The C++ Way
	The D Way

	Namespace using declarations
	The C++ Way
	The D Way

	RAII (Resource Acquisition Is Initialization)
	The C++ Way
	The D Way

	Dynamic Closures
	The C++ Way
	The D Way

	The C Preprocessor Versus D
	
	Header Files
	The C Preprocessor Way
	The D Way

	#pragma once
	The C Preprocessor Way
	The D Way

	#pragma pack
	The C Preprocessor Way
	The D Way

	Macros
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way
	The C Preprocessor Way
	The D Way

	Conditional Compilation
	The C Preprocessor Way
	The D Way

	Code Factoring
	The C Preprocessor Way
	The D Way

	The D Style
	
	White Space
	Comments
	Naming Conventions
	Meaningless Type Aliases
	Declaration Style
	Operator Overloading
	Hungarian Notation

	Example: wc
	Compiler for D Programming Language
	Files
	Requirements
	Installation
	Example
	Compiler Arguments and Switches
	Linking
	Environment Variables
	SC.INI Initialization File
	Bugs
	Feedback

	Acknowledgements

