
D Programming Language

Walter

22nd January 2004

Contents

1 Introduction 7
1.1 D Programming Language . 7
1.2 Overview . 8

1.2.1 What is D? . 8
1.2.2 Why D? . 8
1.2.3 Major Features of D . 14
1.2.4 Sample D Program (sieve.d) 22

2 The Language 24
2.1 Lexical . 24
2.2 Modules . 37

2.2.1 Static Construction and Destruction 40
2.3 Declarations . 41
2.4 Types . 46

2.4.1 Basic Data Types . 46
2.4.2 Derived Data Types . 46
2.4.3 User Defined Types . 46
2.4.4 Pointer Conversions . 47
2.4.5 Implicit Conversions . 47
2.4.6 Delegates . 48

2.5 Properties . 49
2.5.1 Properties for Integral Data Types 49
2.5.2 Properties for Floating Point Types 49
2.5.3 .init Property . 50

2.6 Attributes . 51
2.6.1 Linkage Attribute . 53
2.6.2 Align Attribute . 54
2.6.3 Deprecated Attribute . 54
2.6.4 Protection Attribute . 54
2.6.5 Const Attribute . 55
2.6.6 Override Attribute . 55
2.6.7 Static Attribute . 55

2

Contents 3

2.6.8 Auto Attribute . 56
2.7 Pragmas . 57

2.7.1 Predefined Pragmas . 57
2.7.2 Vendor Specific Pragmas 58

2.8 Expressions . 58
2.8.1 Evaluation Order . 61
2.8.2 Expressions . 61
2.8.3 Assign Expressions . 61
2.8.4 Conditional Expressions . 62
2.8.5 OrOr Expressions . 62
2.8.6 AndAnd Expressions . 63
2.8.7 Bitwise Expressions . 63
2.8.8 Equality Expressions . 64
2.8.9 Identity Expressions . 64
2.8.10 Relational Expressions . 65
2.8.11 Shift Expressions . 67
2.8.12 Add Expressions . 67
2.8.13 Mul Expressions . 68
2.8.14 Unary Expressions . 68
2.8.15 Postfix Expressions . 70
2.8.16 Primary Expressions . 70

2.9 Statements . 73
2.9.1 Labelled Statements . 73
2.9.2 Block Statement . 74
2.9.3 Expression Statement . 75
2.9.4 Declaration Statement . 75
2.9.5 If Statement . 75
2.9.6 While Statement . 76
2.9.7 Do-While Statement . 76
2.9.8 For Statement . 76
2.9.9 Foreach Statement . 77
2.9.10 Switch Statement . 81
2.9.11 Continue Statement . 83
2.9.12 Break Statement . 83
2.9.13 Return Statement . 83
2.9.14 Goto Statement . 84
2.9.15 With Statement . 84
2.9.16 Synchronize Statement . 85
2.9.17 Try Statement . 85
2.9.18 Throw Statement . 86
2.9.19 Volatile Statement . 86
2.9.20 Asm Statement . 87

2.10 Arrays . 88
2.10.1 Array Declarations . 89

4 Contents

2.10.2 Usage . 90
2.10.3 Slicing . 90
2.10.4 Array Copying . 91
2.10.5 Array Setting . 91
2.10.6 Array Concatenation . 92
2.10.7 Array Operations . 92
2.10.8 Rectangular Arrays . 93
2.10.9 Array Properties . 94
2.10.10 Array Bounds Checking . 96
2.10.11 Array Initialization . 97
2.10.12 Special Array Types . 98
2.10.13 Associative Arrays . 100

2.11 Structs, Unions, Enums . 103
2.11.1 Structs, Unions . 103
2.11.2 Enums . 104

2.12 Classes . 106
2.13 Interfaces . 116
2.14 Functions . 119

2.14.1 Nested Functions . 122
2.15 Operator Overloading . 127

2.15.1 Unary Operator Overloading 127
2.15.2 Binary Operator Overloading 128
2.15.3 Function Call Operator Overloading f () 131
2.15.4 Array Operator Overloading 131
2.15.5 Future Directions . 132

2.16 Templates . 132
2.16.1 Template Instantiation . 133
2.16.2 Instantiation Scope . 135
2.16.3 Argument Deduction . 135
2.16.4 Value Parameters . 136
2.16.5 Specialization . 137
2.16.6 Alias Parameters . 137
2.16.7 Limitations . 139

2.17 Design by Contract . 139
2.17.1 Assert Contract . 140
2.17.2 Pre and Post Contracts . 140
2.17.3 In, Out and Inheritance . 142
2.17.4 Class Invariants . 142
2.17.5 References . 142

2.18 Debug, Version, and Static Assert 142
2.18.1 Predefined Versions . 143
2.18.2 Specification . 144
2.18.3 Debug Statement . 144
2.18.4 Version Statement . 145

Contents 5

2.18.5 Debug Attribute . 146
2.18.6 Version Attribute . 147
2.18.7 Static Assert . 148

2.19 Error Handling in D . 148
2.19.1 The Error Handling Problem 149
2.19.2 The D Error Handling Solution 150

2.20 Garbage Collection . 151
2.20.1 How Garbage Collection Works 153
2.20.2 Interfacing Garbage Collected Objects With Foreign Code 153
2.20.3 Pointers and the Garbage Collector 154
2.20.4 Working with the Garbage Collector 154

2.21 Memory Management . 154
2.21.1 Strings (and Array) Copy-on-Write 155
2.21.2 Real Time . 156
2.21.3 Smooth Operation . 157
2.21.4 Free Lists . 157
2.21.5 Reference Counting . 158
2.21.6 Explicit Class Instance Allocation 158
2.21.7 Mark/Release . 160
2.21.8 RAII (Resource Acquisition Is Initialization) 161
2.21.9 Allocating Class Instances On The Stack 161

2.22 Floating Point . 162
2.23 D x86 Inline Assembler . 164

2.23.1 Labels . 165
2.23.2 align IntegerExpression . 165
2.23.3 even . 165
2.23.4 naked . 166
2.23.5 db, ds, di, dl, df, dd, de . 166
2.23.6 Opcodes . 166
2.23.7 Operands . 168
2.23.8 Opcodes Supported . 170

3 Appendices 174
3.1 Interfacing to C . 174

3.1.1 Calling C Functions . 174
3.1.2 Storage Allocation . 175
3.1.3 Data Type Compatibility 176
3.1.4 Calling printf() . 176
3.1.5 Structs and Unions . 177

3.2 Interfacing to C++ . 177
3.3 Portability Guide . 177

3.3.1 32 to 64 Bit Portability . 178
3.3.2 OS Specific Code . 178

3.4 Embedding D in HTML . 179

6 Contents

3.5 MISSING: model.html . 179
3.6 MISSING: phobos.html . 179
3.7 D for Win32 . 179

3.7.1 Calling Conventions . 180
3.7.2 Windows Executables . 180
3.7.3 DLLs (Dynamic Link Libraries) 181
3.7.4 COM Programming . 183

3.8 Converting C .h Files to D Modules 184
3.9 The D Style . 189
3.10 Example: wc . 192
3.11 Compiler for D Programming Language 193

3.11.1 Files Common to Win32 and Linux 193
3.12 Win32 D Compiler . 194

3.12.1 Files . 194
3.12.2 Requirements . 194
3.12.3 Installation . 194
3.12.4 Example . 194
3.12.5 Compiler Arguments and Switches 195
3.12.6 Linking . 196
3.12.7 Environment Variables . 196
3.12.8 SC.INI Initialization File . 197

3.13 Linux D Compiler . 197
3.13.1 Files . 197
3.13.2 Requirements . 197
3.13.3 Installation . 198
3.13.4 Compiler Arguments and Switches 198
3.13.5 Linking . 199
3.13.6 Environment Variables . 199
3.13.7 dmd.conf Initialization File 200
3.13.8 Differences from Win32 version 200
3.13.9 Linux Bugs . 200

3.14 General . 200
3.14.1 Bugs . 200
3.14.2 Feedback . 201

3.15 Acknowledgements . 201

CHAPTER1
Introduction

1.1.
D Programming Language

It seems to me that most of the ”new“ programming languages fall
into one of two categories: Those from academia with radical new
paradigms and those from large corporations with a focus on RAD
and the web. Maybe its time for a new language born out of practi-
cal experience implementing compilers.

– Michael

Great, just what I need... another D in programming.

– Segfault

This is the reference document for the D programming language. D was
conceived in December 1999 by myself as a successor to C and C++, and has
grown and evolved with helpful suggestions and critiques by my friends and
colleagues. I’ve been told the usual, that there’s no chance for a new program-
ming language, that who do I think I am designing a language, etc. Take a look
at the document and decide for yourself!

Check out the quick comparison of D with C, C++, C# and Java.
The D newsgroup in news.digitalmars.com server is where discussions of this

should go. Suggestions, criticism, kudos, flames, etc., are all welcome there. Al-
ternatively, try the D forum.

Note: all D users agree that by downloading and using D, or reading the D
specs, they will explicitly identify any claims to intellectual property rights with

7

8 1.2. Overview

a copyright or patent notice in any posted or emailed feedback sent to Digital
Mars.

Download the current version of the compiler for Win32 and x86 Linux and
try it out!

Alternate versions of this document:

• Alexander Klinsky has prepared a pdffile, though it’s a bit out of date.

• Kazuhiro Inaba has prepared a Japanesetranslation.

-Walter

1.2.
Overview

1.2.1. What is D?

D is a general purpose systems and applications programming language. It is
a higher level language than C++, but retains the ability to write high perfor-
mance code and interface directly with the operating system API’s and with-
hardware. D is well suited to writing medium to large scale million line pro-
grams with teams of developers. D is easy to learn, provides many capabilities
to aid the programmer, and is well suited to aggressive compiler optimization
technology.

D is not a scripting language, nor an interpreted language. It doesn’t come
with a VM, a religion, or an overriding philosophy. It’s a practical language for
practical programmers who need to get the job done quickly, reliably, and leave
behind maintainable, easy to understand code.

D is the culmination of decades of experience implementing compilers for
many diverse languages, and attempting to construct large projects using those
languages. D draws inspiration from those other languages (most especially
C++) and tempers it with experience and real world practicality.

1.2.2. Why D?

Why, indeed. Who needs another programming language?
The software industry has come a long way since the C language was in-

vented. Many new concepts were added to the language with C++, but back-
wards compatibility with C was maintained, including compatibility with nearly
all the weaknesses of the original design. There have been many attempts to
fix those weaknesses, but the compatibility issue frustrates it. Meanwhile, both
C and C++ undergo a constant accretion of new features. These new features
must be carefully fitted into the existing structure without requiring rewriting
old code. The end result is very complicated - the C standard is nearly 500 pages,

Chapter 1. Introduction 9

and the C++ standard is about 750 pages! C++ is a difficult and costly language
to implement, resulting in implementation variations that make it frustrating to
write fully portable C++ code.

C++ programmers tend to program in particular islands of the language, i.e.
getting very proficient using certain features while avoiding other feature sets.
While the code is usually portable from compiler to compiler, it can be hard to
port it from programmer to programmer. A great strength of C++ is that it can
support many radically different styles of programming - but in long term use,
the overlapping and contradictory styles are a hindrance.

C++ implements things like resizable arrays and string concatenation as part
of the standard library, not as part of the core language. Not being part of the
core language has several suboptimal consequences.

Can the power and capability of C++ be extracted, redesigned, and recast
into a language that is simple, orthogonal, and practical? Can it all be put into
a package that is easy for compiler writers to correctly implement, and which
enables compilers to efficiently generate aggressively optimized code?

Modern compiler technology has progressed to the point where language
features for the purpose of compensating for primitive compiler technology can
be omitted. (An example of this would be the ’register’ keyword in C, a more
subtle example is the macro preprocessor in C.) We can rely on modern com-
piler optimization technology to not need language features necessary to get
acceptable code quality out of primitive compilers.

Major Goals of D

• Reduce software development costs by at least 10% by adding in proven
productivity enhancing features and by adjusting language features so
that common, time-consuming bugs are eliminated from the start.

• Make it easier to write code that is portable from compiler to compiler,
machine to machine, and operating system to operating system.

• Support multi-paradigm programming, i.e. at a minimum support imper-
ative, structured, object oriented, and generic programming paradigms.

• Have a short learning curve for programmers comfortable with program-
ming in C or C++.

• Provide low level bare metal access as required.

• Make D substantially easier to implement a compiler for than C++.

• Be compatible with the local C application binary interface.

• Have a context-free grammar.

• Easilly support writing internationalized applications.

10 1.2. Overview

• Incorporate Design by Contract and unit testing methodology.

• Be able to build lightweight, standalone programs.

Features To Keep From C/C++

The general look of D is like C and C++. This makes it easier to learn and port
code to D. Transitioning from C/C++ to D should feel natural, the programmer
will not have to learn an entirely new way of doing things.

Using D will not mean that the programmer will become restricted to a spe-
cialized runtime vm (virtual machine) like the Java vm or the Smalltalk vm. There
is no D vm, it’s a straightforward compiler that generates linkable object files. D
connects to the operating system just like C does. The usual familiar tools like
make will fit right in with D development.

• The general look and feel of C/C++ will be maintained. It will use the
same algebraic syntax, most of the same expression and statement forms,
and the general layout.

• D programs can be written either in C style function-and-data or in C++
style object-oriented, or any mix of the two.

• The compile/link/debug development model will be carried forward, al-
though nothing precludes D from being compiled into bytecode and in-
terpreted.

• Exception handling. More and more experience with exception han-
dling shows it to be a superior way to handle errors than the C traditional
method of using error codes and errno globals.

• Runtime Type Identification. This is partially implemented in C++; in D it
is taken to its next logical step. Fully supporting it enables better garbage
collection, better debugger support, more automated persistence, etc.

• D maintains function link compatibility with the C calling conventions.
This makes it possible for D programs to access operating system API’s
directly. Programmers’ knowledge and experience with existing program-
ming API’s and paradigms can be carried forward to D with minimal effort.

• Operator overloading. D programs can overload operators enabling ex-
tension of the basic types with user defined types.

• Templates. Templates are a way to implement generic programming.
Other ways include using macros or having a variant data type. Using
macros is out. Variants are straightforward, but inefficient and lack type
checking. The difficulties with C++ templates are their complexity, they

Chapter 1. Introduction 11

don’t fit well into the syntax of the language, all the various rules for con-
versions and overloading fitted on top of it, etc. D offers a much simpler
way of doing templates.

• RAII (Resource Acquisition Is Initialization). RAII techniques are an essen-
tial component of writing reliable software.

• Down and dirty programming. D will retain the ability to do down-
and-dirty programming without resorting to referring to external mod-
ules compiled in a different language. Sometimes, it’s just necessary to
coerce a pointer or dip into assembly when doing systems work. D’s goal
is not to prevent down and dirty programming, but to minimize the need
for it in solving routine coding tasks.

Features To Drop

• C source code compatibility. Extensions to C that maintain source com-
patiblity have already been done (C++ and ObjectiveC). Further work in
this area is hampered by so much legacy code it is unlikely that significant
improvements can be made.

• Link compatibility with C++. The C++ runtime object model is just too
complicated - properly supporting it would essentially imply making D a
full C++ compiler too.

• The C preprocessor. Macro processing is an easy way to extend a lan-
guage, adding in faux features that aren’t really there (invisible to the sym-
bolic debugger). Conditional compilation, layered with #include text, macros,
token concatenation, etc., essentially forms not one language but two
merged together with no obvious distinction between them. Even worse
(or perhaps for the best) the C preprocessor is a very primitive macro lan-
guage. It’s time to step back, look at what the preprocessor is used for, and
design support for those capabilities directly into the language.

• Multiple inheritance. It’s a complex feature of debatable value. It’s very
difficult to implement in an efficient manner, and compilers are prone to
many bugs in implementing it. Nearly all the value of MI can be handled
with single inheritance coupled with interfaces and aggregation. What’s
left does not justify the weight of MI implementation.

• Namespaces. An attempt to deal with the problems resulting from linking
together independently developed pieces of code that have conflicting
names. The idea of modules is simpler and works much better.

• Tag name space. This misfeature of C is where the tag names of struct’s
are in a separate but parallel symbol table. C++ attempted to merge the

12 1.2. Overview

tag name space with the regular name space, while retaining backward
compatibility with legacy C code. The result is not printable.

• Forward declarations. C compilers semantically only know about what has
lexically preceded the current state. C++ extends this a little, in that class
members can rely on forward referenced class members. D takes this to
its logical conclusion, forward declarations are no longer necessary at all.
Functions can be defined in a natural order rather than the typical inside-
out order commonly used in C programs to avoid writing forward decla-
rations.

• Include files. A major cause of slow compiles as each compilation unit
must reparse enormous quantities of header files. Include files should be
done as importing a symbol table.

• Creating object instances on the stack. In D, all class objects are by ref-
erence. This eliminates the need for copy constructors, assignment op-
erators, complex destructor semantics, and interactions with exception
handling stack unwinding. Memory resources get freed by the garbage
collector, other resources are freed by using the RAII features of D.

• Trigraphs and digraphs. Unicode is the future.

• Preprocessor. Modern languages should not be text processing, they should
be symbolic processing.

• Non-virtual member functions. In C++, a class designer decides in ad-
vance if a function is to be virtual or not. Forgetting to retrofit the base
class member function to be virtual when the function gets overridden is
a common (and very hard to find) coding error. Making all member func-
tions virtual, and letting the compiler decide if there are no overrides and
hence can be converted to non-virtual, is much more reliable.

• Bit fields of arbitrary size. Bit fields are a complex, inefficient feature rarely
used.

• Support for 16 bit computers. No consideration is given in D for mixed
near/far pointers and all the machinations necessary to generate good 16
bit code. The D language design assumes at least a 32 bit flat memory
space. D will fit smoothly into 64 bit architectures.

• Mutual dependence of compiler passes. In C++, successfully parsing the
source text relies on having a symbol table, and on the various prepro-
cessor commands. This makes it impossible to preparse C++ source, and
makes writing code analyzers and syntax directed editors painfully diffi-
cult to do correctly.

Chapter 1. Introduction 13

• Compiler complexity. Reducing the complexity of an implementation makes
it more likely that multiple, correct implementations are available.

• Distinction between. and ->. This distinction is really not necessary. The.
operator serves just as well for pointer dereferencing.

Who D is For

• Programmers who routinely use lint or similar code analysis tools to elim-
inate bugs before the code is even compiled.

• People who compile with maximum warning levels turned on and who
instruct the compiler to treat warnings as errors.

• Programming managers who are forced to rely on programming style guide-
lines to avoid common C bugs.

• Those who decide the promise of C++ object oriented programming is
not fulfilled due to the complexity of it.

• Programmers who enjoy the expressive power of C++ but are frustrated
by the need to expend much effort explicitly managing memory and find-
ing pointer bugs.

• Projects that need built-in testing and verification.

• Teams who write apps with a million lines of code in it.

• Programmers who think the language should provide enough features to
obviate the continual necessity to manipulate pointers directly.

• Numerical programmers. D has many features to directly support features
needed by numerics programmers, like direct support for the complex
data type and defined behavior for NaN’s and infinities. (These are added
in the new C99 standard, but not in C++.)

• D’s lexical analyzer and parser are totally independent of each other and
of the semantic analyzer. This means it is easy to write simple tools to ma-
nipulate D source perfectly without having to build a full compiler. It also
means that source code can be transmitted in tokenized form for special-
ized applications.

Who D is Not For

• Realistically, nobody is going to convert million line C or C++ programs
into D, and since D does not compile unmodified C/C++ source code, D is
not for legacy apps. (However, D supports legacy C API’s very well.)

14 1.2. Overview

• Very small programs - a scripting or interpreted language like Python,
DMDScript, or Perl is likelymore suitable.

• As a first programming language - Basic or Java is more suitable for begin-
ners. D makes an excellent second language for intermediate to advanced
programmers.

• Language purists. D is a practical language, and each feature of it is eval-
uated in that light, rather than by an ideal. For example, D has constructs
and semantics that virtually eliminate the need for pointers for ordinary
tasks. But pointers are still there, because sometimes the rules need to
be broken. Similary, casts are still there for those times when the typing
system needs to be overridden.

1.2.3. Major Features of D

This section lists some of the more interesting features of D in various categories.

Object Oriented Programming

Classes D’s object oriented nature comes from classes. The inheritance model
is single inheritance enhanced with interfaces. The class Object sits at the root of
the inheritance heirarchy, so all classes implement a common set of functional-
ity. Classes are instantiated by reference, and so complex code to clean up after
exceptions is not required.

Operator Overloading Classes can be crafted that work with existing oper-
ators to extend the type system to support new types. An example would be
creating a bignumber class and then overloading the +, -, * and / operators to
enable using ordinary algebraic syntax with them.

Productivity

Modules Source files have a one-to-one correspondence with modules. In-
stead of #include’ing the text of a file of declarations, just import the module.
There is no need to worry about multiple imports of the same module, no need
to wrapper header files with #ifndef/#endif or #pragma once kludges, etc.

Declaration vs Definition C++ usually requires that functions and classes be
declared twice - the declaration that goes in the.h header file, and the defini-
tion that goes in the.c source file. This is an error prone and tedious process.
Obviously, the programmer should only need to write it once, and the compiler
should then extract the declaration information and make it available for sym-
bolic importing. This is exactly how D works.

Example:

Chapter 1. Introduction 15

class ABC
{

int func() { return 7; }
static int z = 7;

}
int q;

There is no longer a need for a separate definition of member functions,
static members, externs, nor for clumsy syntaxes like:

int ABC::func() { return 7; }
int ABC::z = 7;
extern int q;

Note: Of course, in C++, trivial functions like { return 7; } are written in-
line too, but complex ones are not. In addition, if there are any forward refer-
ences, the functions need to be prototyped. The following will not work in C++:

class Foo
{

int foo(Bar *c) { return c->bar; }
} ;

class Bar
{

public:
int bar() { return 3; }

} ;

But the equivalent D code will work:

class Foo
{

int foo(Bar c) { return c.bar; }
}

class Bar
{

int bar() { return 3; }
}

Whether a D function is inlined or not is determined by the optimizer set-
tings.

16 1.2. Overview

Templates D templates offer a clean way to support generic programming
while offering the power of partial specialization.

Associative Arrays Associative arrays are arrays with an arbitrary data type as
the index rather than being limited to an integer index. In essence, associated
arrays are hash tables. Associative arrays make it easy to build fast, efficient,
bug-free symbol tables.

Real Typedefs C and C++ typedefs are really type aliases, as no new type is
really introduced. D implements real typedefs, where:

typedef int handle;

really does create a new type handle. Type checking is enforced, and type-
defs participate in function overloading. For example:

int foo(int i);
int foo(handle h);

Bit type The fundamental data type is the bit, and D has a bit data type. This
is most useful in creating arrays of bits:

bit[] foo;

Functions

D has the expected support for ordinary functions including global functions,
overloaded functions, inlining of functions, member functions, virtual functions,
function pointers, etc. In addition:

Nested Functions Functions can be nested within other functions. This is
highly useful for code factoring, locality, and function closure techniques.

Function Literals Anonymous functions can be embedded directly into an ex-
pression.

Dynamic Closures Nested functions and class member functions can be refer-
enced with closures (also called delegates), making generic programming much
easier and type safe.

Chapter 1. Introduction 17

In, Out, and Inout Parameters Not only does specifying this help make func-
tions more self-documenting, it eliminates much of the necessity for pointers
without sacrificing anything, and it opens up possibilities for more compiler help
in finding coding problems.

Such makes it possible for D to directly interface to a wider variety of for-
eign API’s. There would be no need for workarounds like "Interface Definition
Languages".

Arrays

C arrays have several faults that can be corrected:

• Dimension information is not carried around with the array, and so has to
be stored and passed separately. The classic example of this are the argc
and argv parameters to main(int argc, char *argv []). (In D, main is
declared as main(char[][] args).)

• Arrays are not first class objects. When an array is passed to a function, it is
converted to a pointer,even though the prototype confusingly says it’s an
array. When this conversion happens, all array type information gets lost.

• C arrays cannot be resized. This means that even simple aggregates like a
stack need to be constructed as a complex class.

• C arrays cannot be bounds checked, because they don’t know what the
array bounds are.

• Arrays are declared with the [] after the identifier. This leads to very clumsy
syntax to declare things like a pointer to an array:

int (*array)[3];

In D, the [] for the array go on the left:

int[3] *array; declares a pointer to an array of 3 ints
long[] func(int x); declares a function returning an array of longs

which is much simpler to understand.

D arrays come in 4 varieties: pointers, static arrays, dynamic arrays, and asso-
ciative arrays. See Arrays.

18 1.2. Overview

Strings String manipulation is so common, and so clumsy in C and C++, that
it needs direct support in the language. Modern languages handle string con-
catenation, copying, etc., and so does D. Strings are a direct consequence of
improved array handling.

Resource Management

Garbage Collection D memory allocation is fully garbage collected. Empiri-
cal experience suggests that a lot of the complicated features of C++ are nec-
essary in order to manage memory deallocation. With garbage collection, the
language gets much simpler.

There’s a perception that garbage collection is for lazy, junior programmers.
I remember when that was said about C++, after all, there’s nothing in C++ that
cannot be done in C, or in assembler for that matter.

Garbage collection eliminates the tedious, error prone memory allocation
tracking code necessary in C and C++. This not only means much faster develop-
ment time and lower maintenance costs, but the resulting program frequently
runs faster!

Sure, garbage collectors can be used with C++, and I’ve used them in my
own C++ projects. The language isn’t friendly to collectors, however, imped-
ing the effectiveness of it. Much of the runtime library code can’t be used with
collectors.

For a fuller discussion of this, see garbage collection.

Explicit Memory Management Despite D being a garbage collected language,
the new and delete operations can be overridden for particular classes so that a
custom allocator can be used.

RAII RAII is a modern software development technique to manage resource
allocation and deallocation. D supports RAII in a controlled, predictable manner
that is independent of the garbage collection cycle.

Performance

Lightweight Aggregates D supports simple C style struct’s, both for compat-
ibility with C data structures and because they’re useful when the full power of
classes is overkill.

Inline Assembler Device drivers, high performance system applications, em-
bedded systems, and specialized code sometimes need to dip into assembly
language to get the job done. While D implementations are not required to
implement the inline assembler, it is defined and part of the language. Most
assembly code needs can be handled with it, obviating the need for separate
assemblers or DLL’s.

Chapter 1. Introduction 19

Many D implementations will also support intrinsic functions analogously to
C’s support of intrinsics for I/O port manipulation, direct access to special float-
ing point operations, etc.

Reliability

A modern language should do all it can to help the programmer flush out bugs
in the code. Help can come in many forms; from making it easy to use more
robust techniques, to compiler flagging of obviously incorrect code, to runtime
checking.

Contracts Design by Contract (invented by B. Meyer) is a revolutionary tech-
nique to aid in ensuring the correctness of programs. D’s version of DBC in-
cludes function preconditions, function postconditions, class invariants, and as-
sert contracts. See Contracts for D’s implementation.

Unit Tests Unit tests can be added to a class, such that they are automatically
run upon program startup. This aids in verifying, in every build, that class imple-
mentations weren’t inadvertantly broken. The unit tests form part of the source
code for a class. Creating them becomes a natural part of the class development
process, as opposed to throwing the finished code over the wall to the testing
group.

Unit tests can be done in other languages, but the result is kludgy and the
languages just aren’t accommodating of the concept. Unit testing is a main fea-
ture of D. For library functions it works out great, serving both to guarantee that
the functions actually work and to illustrate how to use the functions.

Consider the many C++ library and application code bases out there for
download on the web. How much of it comes with *any* verification tests at
all, let alone unit testing? Less than 1%? The usual practice is if it compiles, we
assume it works. And we wonder if the warnings the compiler spits out in the
process are real bugs or just nattering about nits.

Along with design by contract, unit testing makes D far and away the best
language for writing reliable, robust systems applications. Unit testing also gives
us a quick-and-dirty estimate of the quality of some unknown piece of D code
dropped in our laps - if it has no unit tests and no contracts, it’s unacceptable.

Debug Attributes and Statements Now debug is part of the syntax of the
language. The code can be enabled or disabled at compile time, without the
use of macros or preprocessing commands. The debug syntax enables a consis-
tent, portable, and understandable recognition that real source code needs to
be able to generate both debug compilations and release compilations.

20 1.2. Overview

Exception Handling The superior try-catch-finally model is used rather than
just try-catch. There’s no need to create dummy objects just to have the de-
structor implement the finally semantics.

Synchronization Multithreaded programming is becoming more and more
mainstream, and D provides primitives to build multithreaded programs with.
Synchronization can be done at either the method or the object level.

synchronize int func() {. }

Synchronized functions allow only one thread at a time to be executing that
function.

The synchronize statement puts a mutex around a block of statements, con-
trolling access either by object or globally.

Support for Robust Techniques

• Dynamic arrays instead of pointers

• Reference variables instead of pointers

• Reference objects instead of pointers

• Garbage collection instead of explicit memory management

• Built-in primitives for thread synchronization

• No macros to inadvertently slam code

• Inline functions instead of macros

• Vastly reduced need for pointers

• Integral type sizes are explicit

• No more uncertainty about the signed-ness of chars

• No need to duplicate declarations in source and header files.

• Explicit parsing support for adding in debug code.

Chapter 1. Introduction 21

Compile Time Checks

• Stronger type checking

• Explicit initialization required

• Unused local variables not allowed

• No empty ; for loop bodies

• Assignments do not yield boolean results

• Deprecating of obsolete API’s

Runtime Checking

• assert() expressions

• array bounds checking

• undefined case in switch exception

• out of memory exception

• In, out, and class invariant design by contract support

Compatibility

Operator precedence and evaluation rules D retains C operators and their
precedence rules, order of evaluation rules, and promotion rules. This avoids
subtle bugs that might arise from being so used to the way C does things that
one has a great deal of trouble finding bugs due to different semantics.

Direct Access to C API’s Not only does D have data types that correspond to C
types, it provides direct access to C functions. There is no need to write wrapper
functions, parameter swizzlers, nor code to copy aggregate members one by
one.

Support for all C data types Making it possible to interface to any C API or ex-
isting C library code. This support includes structs, unions, enums, pointers, and
all C99 types. D includes the capability to set the alignment of struct members
to ensure compatibility with externally imposed data formats.

22 1.2. Overview

OS Exception Handling D’s exception handling mechanism will connect to
the way the underlying operating system handles exceptions in an application.

Uses Existing Tools D produces code in standard object file format, enabling
the use of standard assemblers, linkers, debuggers, profilers, exe compressors,
and other analyzers, as well as linking to code written in other languages.

Project Management

Versioning D provides built-in support for generation of multiple versions of a
program from the same text. It replaces the C preprocessor #if/#endif technique.

Deprecation As code evolves over time, some old library code gets replaced
with newer, better versions. The old versions must be available to support legacy
code, but they can be marked as deprecated . Code that uses deprecated ver-
sions will be optionally flagged as illegal by a compiler switch, making it easy for
maintenance programmers to identify any dependence on deprecated features.

No Warnings D compilers will not generate warnings for questionable code.
Code will either be acceptable to the compiler or it will not be. This will elimi-
nate any debate about which warnings are valid errors and which are not, and
any debate about what to do with them. The need for compiler warnings is
symptomatic of poor language design.

1.2.4. Sample D Program (sieve.d)

/* Sieve of Eratosthenes prime numbers */

bit[8191] flags;

int main() { int i, count, prime, k, iter;

printf("10 iterations n");
for (iter = 1; iter <= 10; iter++)
{ count = 0;

flags[] = 1;
for (i = 0; i < flags.length; i++)
{ if (flags[i])

{ prime = i + i + 3;
k = i + prime;
while (k < flags.length)
{

flags[k] = 0;
k += prime;

}
count += 1;

Chapter 1. Introduction 23

}
}

}
printf (" n%d primes", count);
return 0;

}

CHAPTER2
The Language

2.1.
Lexical

In D, the lexical analysis is independent of the syntax parsing and the semantic
analysis. The lexical analyzer splits the source text up into tokens. The lexical
grammar describes what those tokens are. The D lexical grammar is designed to
be suitable for high speed scanning, it has a minimum of special case rules, there
is only one phase of translation, and to make it easy to write a correct scanner
for. The tokens are readilly recognizable by those familiar with C and C++.

Phases of Compilation

The process of compiling is divided into multiple phases. Each phase has no
dependence on subsequent phases. For example, the scanner is not perturbed
by the semantic analyser. This separation of the passes makes language tools
like syntax directed editors relatively easy to produce.

1. source character set

The source file is checked to see what character set it is, and the appropri-
ate scanner is loaded. ASCII and UTF formats are accepted.

2. lexical analysis

The source file is divided up into a sequence of tokens. Special tokens are
processed and removed.

3. syntax analysis

The sequence of tokens is parsed to form syntax trees.

24

Chapter 2. The Language 25

4. semantic analysis

The syntax trees are traversed to declare variables, load symbol tables, as-
sign types, and in general determine the meaning of the program.

5. optimization

6. code generation

Source Text

D source text can be in one of the following formats:

• ASCII

• UTF-8

• UTF-16BE

• UTF-16LE

• UTF-32BE

• UTF-32LE

Note that UTF-8 is a superset of traditional 7-bit ASCII. The source text is as-
sumed to be in UTF-8, unless one of the following BOMs (Byte Order Marks) is
present at the beginning of the source text:

Format BOM
UTF-8 EF BB BF
UTF-16BE FE FF
UTF-16LE FF FE
UTF-32BE 00 00 FE FF
UTF-32LE FF FE 00 00
UTF-8 none of the above

There are no digraphs or trigraphs in D. The source text is split into tokens
using the maximal munch technique, i.e., the lexical analyzer tries to make the
longest token it can. For example » is a right shift token, not two greater than
tokens.

26 2.1. Lexical

End of File

EndOfFile :
physical end of the file
u0000
u001A

The source text is terminated by whichever comes first.

End of Line

EndOfLine :
u000D
u000A
u000D u000A

EndOfFile

There is no backslash line splicing, nor are there any limits on the length of a
line.

White Space

WhiteSpace :
Space
Space WhiteSpace

Space :
u0020
u0009
u000B
u000C

EndOfLine
Comment

White space is defined as a sequence of one or more of spaces, tabs, vertical
tabs, form feeds, end of lines, or comments.

Comments

Comment :
/* Characters */
// Characters EndOfLine
/+ Characters +/

D has three kinds of comments:

1. Block comments can span multiple lines, but do not nest.

Chapter 2. The Language 27

2. Line comments terminate at the end of the line.

3. Nesting comments can span multiple lines and can nest.

Comments cannot be used as token concatenators, for example, abc/**/def is
two tokens, abc and def , not one abcdef token.

Identifiers

Identifier :
IdentiferStart
IdentiferStart IdentifierChars

IdentifierChars :
IdentiferChar
IdentiferChar IdentifierChars

IdentifierStart :
_
Letter
UniversalAlpha

IdentifierChar :
IdentiferStart
Digit

Identifiers start with a letter, _, or unicode alpha, and are followed by any
number of letters, _, digits, or universal alphas. Universal alphas are as defined
in ISO/IEC 9899:1999(E) Appendix D. (This is the C99 Standard.) Identifiers can
be arbitrarilly long, and are case sensitive. Identifiers starting with __ (two un-
derscores) are reserved.

String Literals

StringLiteral :
WysiwygString
AlternateWysiwygString
DoubleQuotedString
EscapeSequence
HexString

WysiwygString :
r" WysiwygCharacters "

AlternateWysiwygString :
‘ WysiwygCharacters ‘

WysiwygCharacter :
Character

28 2.1. Lexical

EndOfLine

DoubleQuotedString :
" DoubleQuotedCharacters "

DoubleQuotedCharacter :
Character
EscapeSequence
EndOfLine

EscapeSequence :

’
"
?

a
b
f
n
r
t
v

EndOfFile
x HexDigit HexDigit

OctalDigit
OctalDigit OctalDigit
OctalDigit OctalDigit OctalDigit

u HexDigit HexDigit HexDigit HexDigit
U HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit

HexString :
x" HexStringChars "

HexStringChar
HexDigit
WhiteSpace
EndOfLine

A string literal is either a double quoted string, a wysiwyg quoted string, an
escape sequence, or a hex string.

Wysiwyg quoted strings are enclosed by r" and ". All characters between the
r" and " are part of the string except for EndOfLine which is regarded as a single
n character. There are no escape sequences inside r" ":

r"hello"
r"c: root foo.exe"
r"ab n" string is 4 characters, ’a’, ’b’, ’ ’, ’n’

Chapter 2. The Language 29

An alternate form of wysiwyg strings are enclosed by backquotes, the ‘ char-
acter. The ‘ character is not available on some keyboards and the font rendering
of it is sometimes indistinguishable from the regular ’ character. Since, however,
the ‘ is rarely used, it is useful to delineate strings with " in them.

‘hello‘
‘c: root foo.exe‘
‘ab n‘ string is 4 characters, ’a’, ’b’, ’ ’, ’n’

Double quoted strings are enclosed by "". Escape sequences can be embed-
ded into them with the typical notation. EndOfLine is regarded as a single n
character.

"hello"
"c: root foo.exe"
"ab n" string is 3 characters, ’a’, ’b’, and a linefeed
"ab
" string is 3 characters, ’a’, ’b’, and a linefeed

Escape strings start with a and form an escape character sequence. Adjacent
escape strings are concatenated:

n the linefeed character
t the tab character
" the double quote character
012 octal
x1A hex
u1234 wchar character
U00101234 dchar character
r n carriage return, line feed

Escape sequences not listed above are errors.
Hex strings allow string literals to be created using hex data:

x"0A" same as " x0A
x"00 FBCD 32FD 0A" same as " x00 xFB xCD x32 xFD x0A"

Whitespace and newlines are ignored, so the hex data can be easilly format-
ted. The number of hex characters must be a multiple of 2.

Adjacent strings are concatenated with the ˜ operator, or by simple juxtapo-
sition:

"hello " ˜ "world" ˜ n // forms the string ’h’,’e’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’,linefeed

30 2.1. Lexical

The following are all equivalent:

"ab" "c"
r"ab" r"c"
r"a" "bc"
"a" ˜ "b" ˜ "c"
x61"bc"

Character Literals

CharacterLiteral :
’ SingleQuotedCharacter ’

SingleQuotedCharacter
Character
EscapeSequence

Character literals are a single character or escape sequence enclosed by sin-
gle quotes, ’ ’.

Integer Literals

IntegerLiteral :
Integer
Integer IntegerSuffix

Integer :
Decimal
Binary
Octal
Hexadecimal
Integer _

IntegerSuffix :
l
L
u
U
lu
Lu
lU
LU
ul
uL
Ul
UL

Decimal :
0
NonZeroDigit

Chapter 2. The Language 31

NonZeroDigit Decimal
NonZeroDigit _ Decimal

Binary :
0b BinaryDigits
0B BinaryDigits

Octal :
0 OctalDigits

Hexadecimal :
0x HexDigits
0X HexDigits

Integers can be specified in decimal, binary, octal, or hexadecimal.
Decimal integers are a sequence of decimal digits.
Binary integers are a sequence of binary digits preceded by a ’0b’.
Octal integers are a sequence of octal digits preceded by a ’0’.
Hexadecimal integers are a sequence of hexadecimal digits preceded by a

’0x’ or followed by an ’h’.
Integers can have embedded ’_’ characters, which are ignored. The embed-

ded ’_’ are useful for formatting long literals, such as using them as a thousands
separator:

123_456 // 123456
1_2_3_4_5_6_ // 123456

Integers can be immediately followed by one ’l’ or one ’u’ or both.
The type of the integer is resolved as follows:

1. If it is decimal it is the last representable of ulong, long, or int.

2. If it is not decimal, it is the last representable of ulong, long, uint, or int.

3. If it has the ’u’ suffix, it is the last representable of ulong or uint.

4. If it has the ’l’ suffix, it is the last representable of ulong or long.

5. If it has the ’u’ and ’l’ suffixes, it is ulong.

Floating Literals

FloatLiteral :
Float
Float FloatSuffix
Float ImaginarySuffix
Float FloatSuffix ImaginarySuffix

32 2.1. Lexical

Float :
DecimalFloat
HexFloat
Float _

FloatSuffix :
f
F
l
L

ImaginarySuffix :
i
I

Floats can be in decimal or hexadecimal format, as in standard C.
Hexadecimal floats are preceded with a 0x and the exponent is a p or P fol-

lowed by a power of 2.
Floating literalss can have embedded ’_’ characters, which are ignored. The

embedded ’_’ are useful for formatting long literals to make them more read-
able, such as using them as a thousands separator:

123_456.567_8 // 123456.5678
1_2_3_4_5_6_._5_6_7_8 // 123456.5678
1_2_3_4_5_6_._5e-6_ // 123456.5e-6

Floats can be followed by one f, F, l or L suffix. The f or F suffix means it is a
float, and l or L means it is an extended.

If a floating literal is followed by i or I, then it is an ireal (imaginary) type.
Examples:

0x1.FFFFFFFFFFFFFp1023 // double.max
0x1p-52 // double.epsilon
1.175494351e-38F // float.min
6.3i // idouble 6.3
6.3fi // ifloat 6.3
6.3LI // ireal 6.3

It is an error if the literal exceeds the range of the type. It is not an error if the
literal is rounded to fit into the significant digits of the type.

Complex literals are not tokens, but are assembled from real and imaginary
expressions in the semantic analysis:

4.5 + 6.2i // complex number

Chapter 2. The Language 33

Keywords

Keywords are reserved identifiers.

Keyword :
abstract
alias
align
asm
assert
auto

bit
body
break
byte

case
cast
catch
cent
char
class
cfloat
cdouble
creal
const
continue

dchar
debug
default
delegate
delete
deprecated
do
double

else
enum
export
extern

false
final
finally
float
for
foreach
function

goto

34 2.1. Lexical

idouble
if
ifloat
import
in
inout
int
interface
invariant
ireal
is

long

module

new
null

out
override

pragma
private
protected
public

real
return

short
static
struct
super
switch
synchronized

template
this
throw
true
try
typedef
typeof

ubyte
ucent
uint
ulong
union
unittest
ushort

version

Chapter 2. The Language 35

void
volatile

wchar
while
with

Tokens

Token :
Identifier
StringLiteral
IntegerLiteral
FloatLiteral
Keyword
/
/=
.
..
...
&
&=
& &

|
|=
||
-
-=
--
+
+=
++
<
<=
<<
<<=
<>
<>=
>
>=
>>=
>>>=
>>
>>>
!
!=
!==
!<>
!<>=
!<
!<=
!>

36 2.1. Lexical

!>=
(
)
[
]
{
}
?
,
;
:
$
=
==
===
*
*=
%
%=
ˆ
=̂
˜
˜=

Special Token Sequences

Special token sequences are processed by the lexical analyzer, may appear be-
tween any other tokens, and do not affect the syntax parsing.

There is currently only one special token sequence, #line .

SpecialTokenSequence
line Integer EndOfLine
line Integer Filespec EndOfLine

Filespec
" Characters "

This sets the source line number to Integer, and optionally the source file
name to Filespec, beginning with the next line of source text. The source file
and line number is used for printing error messages and for mapping generated
code back to the source for the symbolic debugging output.

For example:

int #line 6 "foo bar"
x; // this is now line 6 of file foo bar

Note that the backslash character is not treated specially inside Filespec strings.

Chapter 2. The Language 37

2.2.
Modules

Module :
ModuleDeclaration DeclDefs
DeclDefs

DeclDefs :
DeclDef
DeclDef DeclDefs

DeclDef :
AttributeSpecifier
ImportDeclaration
EnumDeclaration
ClassDeclaration
InterfaceDeclaration
AggregateDeclaration
Declaration
Constructor
Destructor
Invariant
Unittest
StaticConstructor
StaticDestructor
DebugSpecification
VersionSpecification
;

Modules have a one-to-one correspondence with source files. The module
name is the file name with the path and extension stripped off.

Modules automatically provide a namespace scope for their contents. Mod-
ules superficially resemble classes, but differ in that:

• There’s only one instance of each module, and it is statically allocated.

• There is no virtual table.

• Modules do not inherit, they have no super modules, etc.

• Only one module per file.

• Module symbols can be imported.

• Modules are always compiled at global scope, and are unaffected by sur-
rounding attributes or other modifiers.

38 2.2. Modules

Module Declaration

The ModuleDeclaration sets the name of the module and what package it be-
longs to. If absent, the module name is taken to be the same name (stripped of
path and extension) of the source file name.

ModuleDeclaration :
module ModuleName ;

ModuleName :
Identifier
ModuleName . Identifier

The Identifier preceding the rightmost are the packages that the module is
in. The packages correspond to directory names in the source file path.

If present, the ModuleDeclaration appears syntactically first in the source file,
and there can be only one per source file.

Example:

module c.stdio; // this is module stdio in the c package

By convention, package and module names are all lower case. This is be-
cause those names have a one-to-one correspondence with the operating sys-
tem’s directory and file names, and many file systems are not case sensitive. All
lower case package and module names will minimize problems moving projects
between dissimilar file systems.

Import Declaration

Rather than text include files, D imports symbols symbolically with the import
declaration:

ImportDeclaration :
import ModuleNameList ;

ModuleNameList :
ModuleName
ModuleName , ModuleNameList

The rightmost Identifier becomes the module name. The top level scope in
the module is merged with the current scope.

Example:

import std.c.stdio; // import module stdio from the c package
import foo, bar; // import modules foo and bar

Chapter 2. The Language 39

Scope and Modules

Each module forms its own namespace. When a module is imported into an-
other module, by default all its top level declarations are available without qual-
ification. Ambiguities are illegal, and can be resolved by explicitly qualifying the
symbol with the module name.

For example, assume the following modules:

Module foo
int x = 1;
int y = 2;

Module bar
int y = 3;
int z = 4;

then:

import foo;
...
q = y; // sets q to foo.y

and:

import foo;
int y = 5;
q = y; // local y overrides foo.y

and:

import foo;
import bar;
q = y; // error: foo.y or bar.y?

and:

import foo;
import bar;
q = bar.y; // q set to 3

If the import is private, such as:

module abc ;
private import def ;

then def is not searched when another module imports abc.

40 2.2. Modules

Module Scope Operator Sometimes, it’s necessary to override the usual lexi-
cal scoping rules to access a name hidden by a local name. This is done with the
global scope operator, which is a leading ’.’:

int x;

int foo(int x)
{

if (y)
return x; // returns foo.x, not global x

else
return.x; // returns global x

}

The leading ’.’ means look up the name at the module scope level.

2.2.1. Static Construction and Destruction

Static constructors are code that gets executed to initialize a module or a class
before the main() function gets called. Static destructors are code that gets ex-
ecuted after the main() function returns, and are normally used for releasing
system resources.

Order of Static Construction

The order of static initialization is implicitly determined by the import decla-
rations in each module. Each module is assumed to depend on any imported
modules being statically constructed first. Other than following that rule, there
is no imposed order on executing the module static constructors.

Cycles (circular dependencies) in the import declarations are allowed as long
as not both of the modules contain static constructors or static destructors. Vio-
lation of this rule will result in a runtime exception.

Order of Static Construction within a Module

Within a module, the static construction occurs in the lexical order in which they
appear.

Order of Static Destruction

It is defined to be exactly the reverse order that static construction was per-
formed in. Static destructors for individual modules will only be run if the corre-
sponding static constructor successfully completed.

Chapter 2. The Language 41

2.3.
Declarations

Declaration :
typedef Decl
alias Decl
Decl

Decl :
const Decl
static Decl
final Decl
synchronized Decl
deprecated Decl
BasicType BasicType2 Declarators ;
BasicType BasicType2 FunctionDeclarator

Declarators :
Declarator
Declarator , Declarators

BasicType :
bit
byte
ubyte
short
ushort
int
uint
long
ulong
char
wchar
dchar
float
double
real
ifloat
idouble
ireal
cfloat
cdouble
creal
void
. IdentifierList
IdentifierList
Typeof
Typeof . IdentifierList
TemplateInstance
TemplateInstance . IdentifierList

IdentifierList

42 2.3. Declarations

Identifier
Identifier . IdentifierList

Typeof
typeof (Expression)

Declaration Syntax

Declaration syntax generally reads left to right:

int x; // x is an int
int* x; // x is a pointer to int
int** x; // x is a pointer to a pointer to int
int[] x; // x is an array of ints
int*[] x; // x is an array of pointers to ints
int[]* x; // x is a pointer to an array of ints

Arrays, read left to right:

int[3] x; // x is an array of 3 ints
int[3][5] x; // x is an array of 5 arrays of 3 ints
int[3]*[5] x; // x is an array of 5 pointers to arrays of 3 ints

Pointers to functions are declared as subdeclarations:

int (*x)(char); // x is a pointer to a function taking a char argument
// and returning an int

int (*[] x)(char); // x is an array of pointers to functions
// taking a char argument and returning an int

C-style array declarations, where the [] appear to the right of the identifier,
may be used as an alternative:

int x[3]; // x is an array of 3 ints
int x[3][5]; // x is an array of 3 arrays of 5 ints
int (*x[5])[3]; // x is an array of 5 pointers to arrays of 3 ints

In a declaration declaring multiple declarations, all the declarations must be
of the same type:

int x,y; // x and y are ints
int* x,y; // x and y are pointers to ints
int x,*y; // error, multiple types
int[] x,y; // x and y are arrays of ints
int x[],y; // error, multiple types

Chapter 2. The Language 43

Type Defining

Strong types can be introduced with the typedef. Strong types are semantically
a distinct type to the type checking system, for function overloading, and for the
debugger.

typedef int myint;

void foo(int x) {. }
void foo(myint m) {. }

.
myint b;
foo(b); // calls foo(myint)

Typedefs can specify a default initializer different from the default initializer
of the underlying type:

typedef int myint = 7;
myint m; // initialized to 7

Type Aliasing

It’s sometimes convenient to use an alias for a type, such as a shorthand for typ-
ing out a long, complex type like a pointer to a function. In D, this is done with
the alias declaration:

alias abc.Foo.bar myint;

Aliased types are semantically identical to the types they are aliased to. The
debugger cannot distinguish between them, and there is no difference as far as
function overloading is concerned. For example:

alias int myint;

void foo(int x) {. }
void foo(myint m) {. } error, multiply defined function foo

Type aliases are equivalent to the C typedef.

Alias Declarations

A symbol can be declared as an alias of another symbol. For example:

44 2.3. Declarations

import string;

alias string.strlen mylen;
...
int len = mylen("hello"); // actually calls string.strlen()

The following alias declarations are valid:

template Foo2(T) { alias T t; }
alias Foo2!(int) t1;
alias Foo2!(int).t t2;
alias t1.t t3;
alias t2 t4;

t1.t v1; // v1 is type int
t2 v2; // v2 is type int
t3 v3; // v3 is type int
t4 v4; // v4 is type int

Aliased symbols are useful as a shorthand for a long qualified symbol name,
or as a way to redirect references from one symbol to another:

version (Win32)
{

alias win32.foo myfoo;
}
version (linux)
{

alias linux.bar myfoo;
}

Aliasing can be used to ’import’ a symbol from an import into the current
scope:

alias string.strlen strlen;

Aliases can also ’import’ a set of overloaded functions, that can be over-
loaded with functions in the current scope:

class A {
int foo(int a) { return 1; }

}

class B : A {
int foo(int a, uint b) { return 2; }

}

Chapter 2. The Language 45

class C : B {
int foo(int a) { return 3; }
alias B.foo foo;

}

class D : C {
}

void test()
{

D b = new D();
int i;

i = b.foo(1, 2u); // calls B.foo
i = b.foo(1); // calls C.foo

}

Note: Type aliases can sometimes look indistinguishable from alias declara-
tions:

alias foo.bar abc; // is it a type or a symbol?

The distinction is made in the semantic analysis pass.

typeof

Typeof is a way to specify a type based on the type of an expression. For exam-
ple:

void func(int i)
{

typeof(i) j; // j is of type int
typeof(3 + 6.0) x; // x is of type double
typeof(1)* p; // p is of type pointer to int
int[typeof[p]] a; // a is of type int[int*]

printf("%d n", typeof(’c’).size); // prints 1
double c = cast(typeof(1.0))j; // cast j to double

}

Where Typeof is most useful is in writing generic template code.

46 2.4. Types

2.4.
Types

2.4.1. Basic Data Types

void no type
bit single bit
byte signed 8 bits
ubyte unsigned 8 bits
short signed 16 bits
ushort unsigned 16 bits
int signed 32 bits
uint unsigned 32 bits
long signed 64 bits
ulong unsigned 64 bits
cent signed 128 bits (reserved for future use)
ucent unsigned 128 bits (reserved for future use)
float 32 bit floating point
double 64 bit floating point
real largest hardware implemented floating point size (Implemen-

tation Note: 80 bits for Intel CPU’s)
ireal a floating point value with imaginary type
ifloat imaginary float
idouble imaginary double
creal a complex number of two floating point values
cfloat complex float
cdouble complex double
char unsigned 8 bit UTF-8
wchar unsigned 16 bit UTF-16
dchar unsigned 32 bit UTF-32

2.4.2. Derived Data Types

• pointer

• array

• function

2.4.3. User Defined Types

• alias

• typedef

Chapter 2. The Language 47

• enum

• struct

• union

• class

2.4.4. Pointer Conversions

Casting pointers to non-pointers and vice versa is not allowed in D. This is to pre-
vent casual manipulation of pointers as integers, as these kinds of practices can
play havoc with the garbage collector and in porting code from one machine to
another. If it is really, absolutely, positively necessary to do this, use a union, and
even then, be very careful that the garbage collector won’t get botched by this.

2.4.5. Implicit Conversions

D has a lot of types, both built in and derived. It would be tedious to require casts
for every type conversion, so implicit conversions step in to handle the obvious
ones automatically.

A typedef can be implicitly converted to its underlying type, but going the
other way requires an explicit conversion. For example:

typedef int myint;
int i;
myint m;
i = m; // OK
m = i; // error
m = (myint)i; // OK

Integer Promotions

The following types are implicitly converted to int :

bit
byte
ubyte
short
ushort
enum

Typedefs are converted to their underlying type.

48 2.4. Types

Usual Arithmetic Conversions

The usual arithmetic conversions convert operands of binary operators to a com-
mon type. The operands must already be of arithmetic types. The following
rules are applied in order:

1. Typedefs are converted to their underlying type.

2. If either operand is extended, the other operand is converted to extended.

3. Else if either operand is double, the other operand is converted to double.

4. Else if either operand is float, the other operand is converted to float.

5. Else the integer promotions are done on each operand, followed by:

(a) If both are the same type, no more conversions are done.

(b) If both are signed or both are unsigned, the smaller type is converted
to the larger.

(c) If the signed type is larger than the unsigned type, the unsigned type
is converted to the signed type.

(d) The signed type is converted to the unsigned type.

2.4.6. Delegates

There are no pointers-to-members in D, but a more useful concept called dele-
gates are supported. Delegates are an aggregate of two pieces of data: an ob-
ject reference and a function pointer. The object reference forms the this pointer
when the function is called.

Delegates are declared similarly to function pointers, except that the key-
word delegate takes the place of (*), and the identifier occurs afterwards:

int function(int) fp; // fp is pointer to a function
int delegate(int) dg; // dg is a delegate to a function

The C style syntax for declaring pointers to functions is also supported:

int (*fp)(int); // fp is pointer to a function

A delegate is initialized analogously to function pointers:

int func(int);
fp = &func; // fp points to func

class OB

Chapter 2. The Language 49

{ int member(int);
}
OB o;
dg = &o.member; // dg is a delegate to object o and

// member function member

Delegates cannot be initialized with static member functions or non-member
functions.

Delegates are called analogously to function pointers:

fp(3); // call func(3)
dg(3); // call o.member(3)

2.5.
Properties

Every type and expression has properties that can be queried:

int.sizeof // yields 2
float.nan // yields the floating point value
(float).nan // yields the floating point nan value
(3).sizeof // yields 4 (because 3 is an int)
2.sizeof // syntax error, since "2." is a floating point number
int.init // default initializer for int’s

2.5.1. Properties for Integral Data Types

.init initializer (0)

.sizeof size in bytes (equivalent to C’s sizeof(type))

.size alternative to.sizeof

.alignof alignment size

.max maximum value

.min minimum value

.sign should we do this?

2.5.2. Properties for Floating Point Types

.init initializer (NaN)

.sizeof size in bytes (equivalent to C’s sizeof(type))

.size alternative to.sizeof

.alignof alignment size

.infinity infinity value

.nan NaN value

.sign 1 if -, 0 if +

50 2.5. Properties

.isnan 1 if nan, 0 if not

.isinfinite 1 if +-infinity, 0 if not

.isnormal 1 if not nan or infinity, 0 if

.digits number of digits of precision

.epsilon smallest increment

.mantissa number of bits in mantissa

.maxExp maximum exponent as power of 2 (?)

.max largest representable value that’s not infinity

.min smallest representable value that’s not 0

2.5.3. .init Property

.init produces a constant expression that is the default initializer. If applied to a
type, it is the default initializer for that type. If applied to a variable or field, it is
the default initializer for that variable or field. For example:

int a;
int b = 1;
typedef int t = 2;
t c;
t d = cast(t)3;

int.init // is 0
a.init // is 0
b.init // is 1
t.init // is 2
c.init // is 2
d.init // is 3

struct Foo
{

int a;
int b = 7;

}

Foo.a.init // is 0
Foo.b.init // is 7

Class and Struct Properties

Properties are member functions that can by syntactically treated as if they were
fields. Properties can be read from or written to. A property is read by calling a
method with no arguments; a property is written by calling a method with its
argument being the value it is set to.

A simple property would be:

struct Foo
{

Chapter 2. The Language 51

int data() { return m_data; } // read property

int data(int value) { return m_data = value; } // write property

private:
int m_data;

}

To use it:

int test()
{

Foo f;

f.data = 3; // same as f.data(3);
return f.data + 3; // same as return f.data() + 3;

}

The absense of a read method means that the property is write-only. The
absense of a write method means that the property is read-only. Multiple write
methods can exist; the correct one is selected using the usual function overload-
ing rules.

In all the other respects, these methods are like any other methods. They
can be static, have different linkages, be overloaded with methods with multiple
parameters, have their address taken, etc.

Note: Properties currently cannot be the lvalue of an op=, ++, or – operator.

2.6.
Attributes

AttributeSpecifier :
Attribute :
Attribute DeclDefBlock
Pragma ;

AttributeElseSpecifier :
AttributeElse :
AttributeElse DeclDefBlock
AttributeElse DeclDefBlock else DeclDefBlock

Attribute :
LinkageAttribute
AlignAttribute
Pragma
deprecated
private
protected

52 2.6. Attributes

public
export
static
final
override
abstract
const
auto

AttributeElse :
DebugAttribute
VersionAttribute

DeclDefBlock
DeclDef
{ }
{ DeclDefs }

Attributes are a way to modify one or more declarations. The general forms
are:

attribute declaration; affects the declaration

attribute: affects all declarations until the next }
declaration;
declaration;

...

attribute affects all declarations in the block
{

declaration;
declaration;

...
}

For attributes with an optional else clause:

attribute
declaration;

else
declaration;

attribute affects all declarations in the block
{

declaration;
declaration;

...
}
else
{

declaration;

Chapter 2. The Language 53

declaration;
...

}

2.6.1. Linkage Attribute

LinkageAttribute :
extern
extern (LinkageType)

LinkageType :
C
D
Windows
Pascal

D provides an easy way to call C functions and operating system API func-
tions, as compatibility with both is essential. The LinkageType is case sensitive,
and is meant to be extensible by the implementation (they are not keywords). C
and D must be supplied, the others are what makes sense for the implementa-
tion. Implementation Note: for Win32 platforms, Windows and Pascal should
exist.

C function calling conventions are specified by:

extern (C):
int foo(); call foo() with C conventions

D conventions are:

extern (D):

or:

extern:

Windows API conventions are:

extern (Windows):
void *VirtualAlloc(
void *lpAddress,
uint dwSize,
uint flAllocationType,
uint flProtect
);

54 2.6. Attributes

2.6.2. Align Attribute

AlignAttribute :
align
align (Integer)

Specifies the alignment of struct members. align by itself sets it to the de-
fault, which matches the default member alignment of the companion C com-
piler. Integer specifies the alignment which matches the behavior of the com-
panion C compiler when non-default alignments are used. A value of 1 means
that no alignment is done; members are packed together.

2.6.3. Deprecated Attribute

It is often necessary to deprecate a feature in a library, yet retain it for backwards
compatiblity. Such declarations can be marked as deprecated, which means that
the compiler can be set to produce an error if any code refers to deprecated
declarations:

deprecated
{

void oldFoo();
}

Implementation Note: The compiler should have a switch specifying if dep-
recated declarations should be compiled with out complaint or not.

2.6.4. Protection Attribute

Protection is an attribute that is one of private, protected, public or export.
Private means that only members of the enclosing class can access the mem-

ber, or members and functions in the same module as the enclosing class. Pri-
vate members cannot be overridden. Private module members are equivalent
to static declarations in C programs.

Protected means that only members of the enclosing class or any classes
derived from that class can access the member. Protected module members are
illegal.

Public means that any code within the executable can access the member.
Export means that any code outside the executable can access the member.

Export is analogous to exporting definitions from a DLL.

Chapter 2. The Language 55

2.6.5. Const Attribute

const

The const attribute declares constants that can be evaluated at compile
time. For example:

const int foo = 7;

const
{

double bar = foo + 6;
}

2.6.6. Override Attribute

override

The override attribute applies to virtual functions. It means that the func-
tion must override a function with the same name and parameters in a base
class. The override attribute is useful for catching errors when a base class’s
member function gets its parameters changed, and all derived classes need to
have their overriding functions updated.

class Foo
{

int bar();
int abc(int x);

}

class Foo2 : Foo
{

override
{

int bar(char c); // error, no bar(char) in Foo
int abc(int x); // ok

}
}

2.6.7. Static Attribute

static

The static attribute applies to functions and data. It means that the declara-
tion does not apply to a particular instance of an object, but to the type of the
object. In other words, it means there is no this reference.

56 2.6. Attributes

class Foo
{

static int bar() { return 6; }
int foobar() { return 7; }

}

...

Foo f;
Foo.bar(); // produces 6
Foo.foobar(); // error, no instance of Foo
f.bar(); // produces 6;
f.foobar(); // produces 7;

Static functions are never virtual.
Static data has only one instance for the entire program, not once per object.
Static does not have the additional C meaning of being local to a file. Use

the private attribute in D to achieve that. For example:

module foo;
int x = 3; // x is global
private int y = 4; // y is local to module foo

Static can be applied to constructors and destructors, producing static con-
structors and static destructors.

2.6.8. Auto Attribute

auto

The auto attribute is used for local variables and for class declarations. For
class declarations, the auto attribute creates an auto class. For local declarations,
auto implements the RAII (Resource Acquisition Is Initialization) protocol. This
means that the destructor for an object is automatically called when the auto
reference to it goes out of scope. The destructor is called even if the scope is
exited via a thrown exception, thus auto is used to guarantee cleanup.

Auto cannot be applied to globals, statics, data members, inout or out pa-
rameters. Arrays of autos are not allowed, and auto function return values are
not allowed. Assignment to an auto, other than initialization, is not allowed. Ra-
tionale: These restrictions may get relaxed in the future if a compelling reason
to appears.

Chapter 2. The Language 57

2.7.
Pragmas

Pragma :
pragma (Identifier)
pragma (Identifier , ExpressionList)

Pragmas are a way to pass special information to the compiler and to add
vendor specific extensions to D. Pragmas can be used by themselves terminated
with a ’;’, they can influence a statement, a block of statements, a declaration, or
a block of declarations.

pragma(ident); // just by itself

pragma(ident) declaration; // influence one declaration

pragma(ident): // influence subsequent declarations
declaration;
declaration;

pragma(ident) // influence block of declarations
{ declaration;

declaration;
}

pragma(ident) statement; // influence one statement

pragma(ident) // influence block of statements
{ statement;

statement;
}

The kind of pragma it is is determined by the Identifier . ExpressionList is a
comma-separated list of AssignExpressions. The AssignExpressions must be parsable
as expressions, but what they mean semantically is up to the individual pragma
semantics.

2.7.1. Predefined Pragmas

All implementations must support these, even if by just ignoring them:

• msg Prints a message while compiling, the AssignExpressions must be string
literals:

pragma(msg, "compiling...");

58 2.8. Expressions

2.7.2. Vendor Specific Pragmas

Vendor specific pragma Identifiers can be defined if they are prefixed by the ven-
dor’s trademarked name, in a similar manner to version identifiers:

pragma(DigitalMars_funky_extension) {... }

Compilers must diagnose an error for unrecognized Pragma s, even if they
are vendor specific ones. This implies that vendor specific pragmas should be
wrapped in version statements:

version (DigitalMars)
{

pragma(DigitalMars_funky_extension) {... }
}

2.8.
Expressions

C and C++ programmers will find the D expressions very familiar, with a few
interesting additions.

Expressions are used to compute values with a resulting type. These values
can then be assigned, tested, or ignored. Expressions can also have side effects.

Expression :
AssignExpression
AssignExpression , Expression

AssignExpression :
ConditionalExpression
ConditionalExpression = AssignExpression
ConditionalExpression += AssignExpression
ConditionalExpression -= AssignExpression
ConditionalExpression *= AssignExpression
ConditionalExpression /= AssignExpression
ConditionalExpression %= AssignExpression
ConditionalExpression &= AssignExpression
ConditionalExpression |= AssignExpression
ConditionalExpression =̂ AssignExpression
ConditionalExpression ˜= AssignExpression
ConditionalExpression <<= AssignExpression
ConditionalExpression >>= AssignExpression
ConditionalExpression >>>= AssignExpression

ConditionalExpression :
OrOrExpression
OrOrExpression ? Expression : ConditionalExpression

Chapter 2. The Language 59

OrOrExpression :
AndAndExpression
AndAndExpression || AndAndExpression

AndAndExpression :
OrExpression
OrExpression & & OrExpression

OrExpression :
XorExpression
XorExpression | XorExpression

XorExpression :
AndExpression
AndExpression ˆ AndExpression

AndExpression :
EqualExpression
EqualExpression & EqualExpression

EqualExpression :
RelExpression
RelExpression == RelExpression
RelExpression != RelExpression
RelExpression is RelExpression

RelExpression :
ShiftExpression
ShiftExpression < ShiftExpression
ShiftExpression <= ShiftExpression
ShiftExpression > ShiftExpression
ShiftExpression >= ShiftExpression
ShiftExpression !<>= ShiftExpression
ShiftExpression !<> ShiftExpression
ShiftExpression <> ShiftExpression
ShiftExpression <>= ShiftExpression
ShiftExpression !> ShiftExpression
ShiftExpression !>= ShiftExpression
ShiftExpression !< ShiftExpression
ShiftExpression !<= ShiftExpression
ShiftExpression in ShiftExpression

ShiftExpression :
AddExpression
AddExpression << AddExpression
AddExpression >> AddExpression
AddExpression >>> AddExpression

AddExpression :
MulExpression
MulExpression + MulExpression
MulExpression - MulExpression
MulExpression ˜ MulExpression

60 2.8. Expressions

MulExpression :
UnaryExpression
UnaryExpression * UnaryExpression
UnaryExpression / UnaryExpression
UnaryExpression % UnaryExpression

UnaryExpression :
PostfixExpression
& UnaryExpression

++ UnaryExpression
-- UnaryExpression
* UnaryExpression
- UnaryExpression
+ UnaryExpression
! UnaryExpression
˜ UnaryExpression
delete UnaryExpression
NewExpression
(Type) UnaryExpression
(Type). Identifier

PostfixExpression :
PrimaryExpression
PostfixExpression . Identifier
PostfixExpression ++
PostfixExpression --
PostfixExpression (ArgumentList)
PostfixExpression [Expression]

PrimaryExpression :
Identifier
. Identifier
this
super
null
true
false
NumericLiteral
CharacterLiteral
StringLiteral
FunctionLiteral
AssertExpression
Type . Identifier

AssertExpression :
assert (Expression)

ArgumentList :
AssignExpression
AssignExpression , ArgumentList

NewExpression :
new BasicType Stars [AssignExpression] Declarator

Chapter 2. The Language 61

new BasicType Stars (ArgumentList)
new BasicType Stars
new (ArgumentList) BasicType Stars [AssignExpression] Declarator
new (ArgumentList) BasicType Stars (ArgumentList)
new (ArgumentList) BasicType Stars

Stars
nothing
*
* Stars

2.8.1. Evaluation Order

Unless otherwise specified, the implementation is free to evaluate the compo-
nents of an expression in any order. It is an error to depend on order of evalua-
tion when it is not specified. For example, the following are illegal:

i = ++i;
c = a + (a = b);
func(++i, ++i);

If the compiler can determine that the result of an expression is illegally de-
pendent on the order of evaluation, it can issue an error (but is not required to).
The ability to detect these kinds of errors is a quality of implementation issue.

2.8.2. Expressions

AssignExpression , Expression

The left operand of the , is evaluated, then the right operand is evaluated.
The type of the expression is the type of the right operand, and the result is the
result of the right operand.

2.8.3. Assign Expressions

ConditionalExpression = AssignExpression

The right operand is implicitly converted to the type of the left operand, and
assigned to it. The result type is the type of the lvalue, and the result value is the
value of the lvalue after the assignment.

The left operand must be an lvalue.

62 2.8. Expressions

Assignment Operator Expressions

ConditionalExpression += AssignExpression
ConditionalExpression -= AssignExpression
ConditionalExpression *= AssignExpression
ConditionalExpression /= AssignExpression
ConditionalExpression %= AssignExpression
ConditionalExpression &= AssignExpression
ConditionalExpression |= AssignExpression
ConditionalExpression =̂ AssignExpression
ConditionalExpression <<= AssignExpression
ConditionalExpression >>= AssignExpression
ConditionalExpression >>>= AssignExpression

Assignment operator expressions, such as:

a op = b

are semantically equivalent to:

a = a op b

except that operand a is only evaluated once.

2.8.4. Conditional Expressions

OrOrExpression ? Expression : ConditionalExpression

The first expression is converted to bool, and is evaluated. If it is true, then
the second expression is evaluated, and its result is the result of the conditional
expression. If it is false, then the third expression is evaluated, and its result is the
result of the conditional expression. If either the second or third expressions are
of type void, then the resulting type is void. Otherwise, the second and third ex-
pressions are implicitly converted to a common type which becomes the result
type of the conditional expression.

2.8.5. OrOr Expressions

AndAndExpression || AndAndExpression

The result type of an OrOr expression is bool, unless the right operand has
type void, when the result is type void.

Chapter 2. The Language 63

The OrOr expression evaluates its left operand. If the left operand, converted
to type bool, evaluates to true, then the right operand is not evaluated. If the
result type of the OrOr expression is bool then the result of the expression is
true. If the left operand is false, then the right operand is evaluated. If the result
type of the OrOr expression is bool then the result of the expression is the right
operand converted to type bool.

2.8.6. AndAnd Expressions

OrExpression & & OrExpression

The result type of an AndAnd expression is bool, unless the right operand
has type void, when the result is type void.

The AndAnd expression evaluates its left operand. If the left operand, con-
verted to type bool, evaluates to false, then the right operand is not evaluated.
If the result type of the AndAnd expression is bool then the result of the expres-
sion is false. If the left operand is true, then the right operand is evaluated. If the
result type of the AndAnd expression is bool then the result of the expression is
the right operand converted to type bool.

2.8.7. Bitwise Expressions

Bit wise expressions perform a bitwise operation on their operands. Their operands
must be integral types. First, the default integral promotions are done. Then, the
bitwise operation is done.

Or Expressions

XorExpression | XorExpression

The operands are OR’d together.

Xor Expressions

AndExpression ˆ AndExpression

The operands are XOR’d together.

64 2.8. Expressions

And Expressions

EqualExpression & EqualExpression

The operands are AND’d together.

2.8.8. Equality Expressions

RelExpression == RelExpression
RelExpression != RelExpression

Equality expressions compare the two operands for equality (==) or inequal-
ity (!=). The type of the result is bool. The operands go through the usual con-
versions to bring them to a common type before comparison.

If they are integral values or pointers, equality is defined as the bit pattern
of the type matches exactly. Equality for struct objects means the bit patterns
of the objects match exactly (the existence of alignment holes in the objects is
accounted for, usually by setting them all to 0 upon initialization). Equality for
floating point types is more complicated. -0 and +0 compare as equal. If either
or both operands are NAN, then both the == and != comparisons return false.
Otherwise, the bit patterns are compared for equality.

For complex numbers, equality is defined as equivalent to:

x.re == y.re & & x.im == y.im

and inequality is defined as equivalent to:

x.re != y.re || x.im != y.im

For class objects, equality is defined as the result of calling Object.eq(). If one
or the other or both objects are null, an exception is raised.

For static and dynamic arrays, equality is defined as the lengths of the arrays
matching, and all the elements are equal.

2.8.9. Identity Expressions

RelExpression is RelExpression

The is compares for identity. To compare for not identity, use !(e1 is e2).
The type of the result is bool. The operands go through the usual conversions
to bring them to a common type before comparison.

Chapter 2. The Language 65

For operand types other than class objects, static or dynamic arrays, identity
is defined as being the same as equality.

For class objects, identity is defined as the object references are for the same
object. Null class objects can be compared with is.

For static and dynamic arrays, identity is defined as referring to the same
array elements.

The identity operator is cannot be overloaded.

2.8.10. Relational Expressions

ShiftExpression < ShiftExpression
ShiftExpression <= ShiftExpression
ShiftExpression > ShiftExpression
ShiftExpression >= ShiftExpression
ShiftExpression !<>= ShiftExpression
ShiftExpression !<> ShiftExpression
ShiftExpression <> ShiftExpression
ShiftExpression <>= ShiftExpression
ShiftExpression !> ShiftExpression
ShiftExpression !>= ShiftExpression
ShiftExpression !< ShiftExpression
ShiftExpression !<= ShiftExpression
ShiftExpression in ShiftExpression

First, the integral promotions are done on the operands. The result type of a
relational expression is bool.

For class objects, the result of Object.cmp() forms the left operand, and 0
forms the right operand. The result of the relational expression (o1 op o2) is:

(o1.cmp(o2) op 0)

It is an error to compare objects if one is null.

For static and dynamic arrays, the result of the relational op is the result of
the operator applied to the first non-equal element of the array. If two arrays
compare equal, but are of different lengths, the shorter array compares as "less"
than the longer array.

Integer comparisons

Integer comparisons happen when both operands are integral types.

66 2.8. Expressions

Operator Relation
< less
> greater
<= less or equal
>= greater or equal
== equal
!= not equal

It is an error to have one operand be signed and the other unsigned for a
<, <=, > or >= expression. Use casts to make both operands signed or both
operands unsigned.

Floating point comparisons

If one or both operands are floating point, then a floating point comparison is
performed.

Useful floating point operations must take into account NAN values. In par-
ticular, a relational operator can have NAN operands. The result of a relational
operation on float values is less, greater, equal, or unordered (unordered means
either or both of the operands is a NAN). That means there are 14 possible com-
parison conditions to test for:

<caption>Floating point comparison operators</caption>
OperatorGreater

Than
Less
Than

Equal UnorderedExceptionRelation

== F F T F no equal
!= T T F T no unordered, less, or

greater
> T F F F yes greater
>= T F T F yes greater or equal
< F T F F yes less
<= F T T F yes less or equal
!<>= F F F T no unordered
<> T T F F yes less or greater
<>= T T T F yes less, equal, or

greater
!<= T F F T no unordered or

greater
!< T F T T no unordered,

greater, or equal
!>= F T F T no unordered or less
!> F T T T no unordered, less, or

equal
!<> F F T T no unordered or

equal

Chapter 2. The Language 67

Notes:

1. For floating point comparison operators, (a !op b) is not the same as !(a op
b).

2. "Unordered" means one or both of the operands is a NAN.

3. "Exception" means the Invalid Exception is raised if one of the operands is
a NAN.

In Expressions

ShiftExpression in ShiftExpression

An associative array can be tested to see if an element is in the array:

int foo[char[]];
.
if ("hello" in foo)

.

The in expression has the same precedence as the relational expressions <,
<=, etc.

2.8.11. Shift Expressions

AddExpression << AddExpression
AddExpression >> AddExpression
AddExpression >>> AddExpression

The operands must be integral types, and undergo the usual integral pro-
motions. The result type is the type of the left operand after the promotions.
The result value is the result of shifting the bits by the right operand’s value.

« is a left shift. » is a signed right shift. »> is an unsigned right shift.
It’s illegal to shift by more bits than the size of the quantity being shifted:

int c;
c << 33; error

2.8.12. Add Expressions

MulExpression + MulExpression
MulExpression - MulExpression

68 2.8. Expressions

If the operands are of integral types, they undergo integral promotions, and
then are brought to a common type using the usual arithmetic conversions.

If either operand is a floating point type, the other is implicitly converted to
floating point and they are brought to a common type via the usual arithmetic
conversions.

If the first operand is a pointer, and the second is an integral type, the result-
ing type is the type of the first operand, and the resulting value is the pointer
plus (or minus) the second operand multiplied by the size of the type pointed to
by the first operand.

For the + operator, if both operands are arrays of a compatible type, the re-
sulting type is an array of that compatible type, and the resulting value is the
concatenation of the two arrays.

2.8.13. Mul Expressions

UnaryExpression * UnaryExpression
UnaryExpression / UnaryExpression
UnaryExpression % UnaryExpression

The operands must be arithmetic types. They undergo integral promotions,
and then are brought to a common type using the usual arithmetic conversions.

For integral operands, the *, /, and % correspond to multiply, divide, and
modulus operations. For multiply, overflows are ignored and simply chopped to
fit into the integral type. If the right operand of divide or modulus operators is
0, a DivideByZeroException is thrown.

For floating point operands, the operations correspond to the IEEE 754 float-
ing point equivalents. The modulus operator only works with reals, it is illegal to
use it with imaginary or complex operands.

2.8.14. Unary Expressions

& UnaryExpression
++ UnaryExpression
-- UnaryExpression
* UnaryExpression
- UnaryExpression
+ UnaryExpression
! UnaryExpression
˜ UnaryExpression
delete UnaryExpression
NewExpression
(Type) UnaryExpression
(Type). Identifier

Chapter 2. The Language 69

New Expressions

New expressions are used to allocate memory on the garbage collected heap
(default) or using a class specific allocator.

To allocate multidimensional arrays, the declaration reads in the same order
as the prefix array declaration order.

char[][] foo; // dynamic array of strings
...
foo = new char[][30]; // allocate 30 arrays of strings

Cast Expressions

In C and C++, cast expressions are of the form:

(type) unaryexpression

There is an ambiguity in the grammar, however. Consider:

(foo) - p;

Is this a cast of a dereference of negated p to type foo, or is it p being sub-
tracted from foo? This cannot be resolved without looking up foo in the symbol
table to see if it is a type or a variable. But D’s design goal is to have the syntax
be context free - it needs to be able to parse the syntax without reference to the
symbol table. So, in order to distinguish a cast from a parenthesized subexpres-
sion, a different syntax is necessary.

C++ does this by introducing:

dynamic_cast < type >(expression)

which is ugly and clumsy to type. D introduces the cast keyword:

cast(foo) -p; cast (-p) to type foo
(foo) - p; subtract p from foo

cast has the nice characteristic that it is easy to do a textual search for it, and
takes some of the burden off of the relentlessly overloaded () operator.

D differs from C/C++ in another aspect of casts. Any casting of a class refer-
ence to a derived class reference is done with a runtime check to make sure it
really is a proper downcast. This means that it is equivalent to the behavior of
the dynamic_cast operator in C++.

70 2.8. Expressions

class A {... }
class B : A {... }

void test(A a, B b)
{

B bx = a; error, need cast
B bx = cast(B) a; bx is null if a is not a B
A ax = b; no cast needed
A ax = cast(A) b; no runtime check needed for upcast

}

D does not have a Java style instanceof operator, because the cast operator
performs the same function:

Java:
if (a instanceof B)

D:
if ((B) a)

2.8.15. Postfix Expressions

PostfixExpression . Identifier
PostfixExpression -> Identifier
PostfixExpression ++
PostfixExpression --
PostfixExpression (ArgumentList)
PostfixExpression [Expression]

2.8.16. Primary Expressions

Identifier
. Identifier
this
super
null
true
false
NumericLiteral
CharacterLiteral
StringLiteral
FunctionLiteral
AssertExpression
Type . Identifier

Chapter 2. The Language 71

.Identifier

Identifier is looked up at module scope, rather than the current lexically nested
scope.

this

Within a non-static member function, this resolves to a reference to the object
that called the function.

super

Within a non-static member function, super resolves to a reference to the object
that called the function, cast to its base class. It is an error if there is no base class.
super is not allowed in struct member functions.

null

The keyword null represents the null pointer value; technically it is of type (void
*). It can be implicitly cast to any pointer type. The integer 0 cannot be cast to
the null pointer. Nulls are also used for empty arrays.

true, false

These are of type bit and resolve to values 1 and 0, respectively.

Character Literals

Character literals are single characters and resolve to one of type char, wchar,
or dchar. If the literal is a u escape sequence, it resolves to type wchar. If the
literal is a U escape sequence, it resolves to type dchar. Otherwise, it resolves to
the type with the smallest size it will fit into.

Function Literals

FunctionLiteral
function (ParameterList) FunctionBody
function Type (ParameterList) FunctionBody
delegate (ParameterList) FunctionBody
delegate Type (ParameterList) FunctionBody

FunctionLiterals enable embedding anonymous functions directly into ex-
pressions. For example:

int function(char c) fp;

72 2.8. Expressions

void test()
{

static int foo(char c) { return 6; }

fp = foo;
}

is exactly equivalent to:

int function(char c) fp;

void test()
{

fp = function int(char c) { return 6;} ;
}

And:

int abc(int delegate(long i));

void test()
{ int b = 3;

int foo(long c) { return 6 + b; }

abc(foo);
}

is exactly equivalent to:

int abc(int delegate(long i));

void test()
{ int b = 3;

abc(delegate int(long c) { return 6 + b; });
}

If the Type is omitted, it is treated as void. When comparing with nested
functions, the function form is analogous to static or non-nested functions, and
the delegate form is analogous to non-static nested functions.

Assert Expressions

AssertExpression :
assert (Expression)

Chapter 2. The Language 73

Asserts evaluate the expression. If the result is false, an AssertError is thrown.
If the result is true, then no exception is thrown. It is an error if the expression
contains any side effects that the program depends on. The compiler may op-
tionally not evaluate assert expressions at all. The result type of an assert expres-
sion is void. Asserts are a fundamental part of the Design by Contract support
in D.

2.9.
Statements

C and C++ programmers will find the D statements very familiar, with a few in-
teresting additions.

Statement :
LabeledStatement
BlockStatement
ExpressionStatement DeclarationStatement IfStatement
DebugStatement
VersionStatement
WhileStatement
DoWhileStatement
ForStatement
ForeachStatement
SwitchStatement
CaseStatement
DefaultStatement
ContinueStatement
BreakStatement
ReturnStatement
GotoStatement
WithStatement
SynchronizeStatement TryStatement
ThrowStatement
VolatileStatement
AsmStatement
PragmaStatement

2.9.1. Labelled Statements

Statements can be labelled. A label is an identifier that precedes a statement.

LabelledStatement :
Identifier ’:’ Statement

Any statement can be labelled, including empty statements, and so can serve
as the target of a goto statement. Labelled statements can also serve as the tar-
get of a break or continue statement.

74 2.9. Statements

Labels are in a name space independent of declarations, variables, types, etc.
Even so, labels cannot have the same name as local declarations. The label name
space is the body of the function they appear in. Label name spaces do not nest,
i.e. a label inside a block statement is accessible from outside that block.

2.9.2. Block Statement

A block statement is a sequence of statements enclosed by { }. The statements
are executed in lexical order.

BlockStatement :
{ }
{ StatementList }

StatementList :
Statement
Statement StatementList

A block statement introduces a new scope for local symbols. A local symbol’s
name, however, must be unique within the function.

void func1(int x)
{ int x; // illegal, x is multiply defined in function scope
}

void func2()
{

int x;

{ int x; // illegal, x is multiply defined in function scope
}

}

void func3()
{

{ int x;
}
{ int x; // illegal, x is multiply defined in function scope
}

}

void func4()
{

{ int x;
}
{ x++; // illegal, x is undefined
}

}

Chapter 2. The Language 75

The idea is to avoid bugs in complex functions caused by scoped decla-
rations inadvertantly hiding previous ones. Local names should all be unique
within a function.

2.9.3. Expression Statement

The expression is evaluated.

ExpressionStatement :
Expression ;

Expressions that have no affect, like (x + x), are illegal in expression state-
ments.

2.9.4. Declaration Statement

Declaration statements declare and initialize variables.

DeclarationStatement :
Type IdentifierList ;

IdentifierList :
Variable
Variable , IdentifierList

Variable :
Identifier
Identifier = AssignmentExpression

If no AssignmentExpression is there to initialize the variable, it is initialized to
the default value for its type.

2.9.5. If Statement

If statements provide simple conditional execution of statements.

IfStatement :
if (Expression) Statement
if (Expression) Statement else Statement

Expression is evaluated and must have a type that can be converted to a
boolean. If it’s true the if statement is transferred to, else the else statement
is transferred to.

The ’dangling else’ parsing problem is solved by associating the else with the
nearest if statement.

76 2.9. Statements

2.9.6. While Statement

While statements implement simple loops.

WhileStatement :
while (Expression) Statement

Expression is evaluated and must have a type that can be converted to a
boolean. If it’s true the statement is executed. After the statement is executed,
the Expression is evaluated again, and if true the statement is executed again.
This continues until the Expression evaluates to false.

A break statement will exit the loop. A continue statement will transfer di-
rectly to evaluationg Expression again.

2.9.7. Do-While Statement

Do-While statements implement simple loops.

DoStatement :
do Statement while (Expression)

Statement is executed. Then Expression is evaluated and must have a type
that can be converted to a boolean. If it’s true the loop is iterated again. This
continues until the Expression evaluates to false.

A break statement will exit the loop. A continue statement will transfer di-
rectly to evaluationg Expression again.

2.9.8. For Statement

For statements implement loops with initialization, test, and increment clauses.

ForStatement :
for (Initialize ; Test ; Increment) Statement

Initialize :
empty
Expression
Declaration

Test :
empty
Expression

Increment :
empty
Expression

Chapter 2. The Language 77

Initializer is executed. Test is evaluated and must have a type that can be
converted to a boolean. If it’s true the statement is executed. After the statement
is executed, the Increment is executed. Then Test is evaluated again, and if true
the statement is executed again. This continues until the Test evaluates to false.

A break statement will exit the loop. A continue statement will transfer di-
rectly to the Increment.

If Initializer declares a variable, that variable’s scope extends through the end
of Statement. For example:

for (int i = 0; i < 10; i++)
foo(i);

is equivalent to:

{ int i;
for (i = 0; i < 10; i++)

foo(i);
}

Function bodies cannot be empty:

for (int i = 0; i < 10; i++)
; // illegal

Use instead:

for (int i = 0; i < 10; i++)
{
}

The Initializer may be omitted. Test may also be omitted, and if so, it is treated
as if it evaluated to true.

2.9.9. Foreach Statement

A foreach statement loops over the contents of an aggregate.

ForeachStatement :
foreach (ForeachTypeList ; Expression) Statement

ForeachTypeList :
ForeachType
ForeachType , ForeachTypeList

ForeachType :
inout Type Identifier
Type Identifier

78 2.9. Statements

Expression is evaluated. It must evaluate to an aggregate expression of type
static array, dynamic array, associative array, struct, or class. The Statement is
executed, once for each element of the aggregate expression. At the start of
each iteration, the variables declared by the ForeachTypeList are set to be a copy
of the contents of the aggregate. If the variable is inout, it is a reference to the
contents of that aggregate.

If the aggregate expression is a static or dynamic array, there can be one or
two variables declared. If one, then the variable is said to be the value set to the
elements of the array, one by one. The type of the variable must match the type
of the array contents. If there are two variables declared, the first is said to be
the index and the second is said to be the value. The index must be of int or uint
type, it cannot be inout, and it is set to be the index of the array element.

char[] a;
...
foreach (int i, char c; a)
{

printf("a[%d] = ’%c’ n", i, c);
}

If the aggregate expression is an associative array, there can be one or two
variables declared. If one, then the variable is said to be the value set to the
elements of the array, one by one. The type of the variable must match the type
of the array contents. If there are two variables declared, the first is said to be
the index and the second is said to be the value. The index must be of the same
type as the indexing type of the associative array. It cannot be inout , and it is set
to be the index of the array element.

double[char[]] a; // index type is char[], value type is double
...
foreach (char[] s, double d; a)
{

printf("a[’%.*s’] = %g n", s, d);
}

If the aggregate expression is a static or dynamic array, the elements are
iterated over starting at index 0 and continuing to the maximum of the array. If
it is an associative array, the order of the elements is undefined. If it is a struct or
class object, it is defined by the special opApply member function.

If the aggregate is a struct or a class object, that struct or class must have an
opApply function with the type:

int opApply (int delegate(inout Type [,...]) dg);

Chapter 2. The Language 79

where Type matches the Type used in the foreach declaration of Identifier.
Multiple ForeachType s correspond with multiple Type’s in the delegate type passed
to opApply. There can be multiple opApply functions, one is selected by match-
ing the type of dg to the ForeachTypes of the ForeachStatement. The body of the
opApply function iterates over the elements it aggregates, passing them each to
the dg function. If the dg returns 0, then opApply goes on to the next element.
If the dg returns a nonzero value, opApply must cease iterating and return that
value. Otherwise, after done iterating across all the elements, opApply will re-
turn 0.

For example, consider a class that is a container for two elements:

class Foo
{

uint array[2];

int opApply (int delegate(inout uint) dg)
{ int result = 0;

for (int i = 0; i < array.length; i++)
{

result = dg (array[i]);
if (result)

break;
}
return result;

}
}

An example using this might be:

void test()
{

Foo a = new Foo();

a.array[0] = 73;
a.array[1] = 82;

foreach (uint u; a)
{

printf("%d n", u);
}

}

which would print:

73
82

80 2.9. Statements

Aggregates can be string literals, which can be accessed as char, wchar, or
dchar arrays:

void test()
{

foreach (char c; "ab")
{

printf("’%c’ n", c);
}
foreach (wchar w; "xy")
{

wprintf("’%c’ n", w);
}

}

which would print:

’a’
’b’
’x’
’y’

inout can be used to update the original elements:

void test()
{

static uint[2] a = [7, 8];

foreach (inout uint u; a)
{

u++;
}
foreach (uint u; a)
{

printf("%d n", u);
}

}

which would print:

8
9

The aggregate itself must not be resized, reallocated, free’d, reassigned or
destructed while the foreach is iterating over the elements.

Chapter 2. The Language 81

int[] a;
int[] b;
foreach (int i; a)
{

a = null; // error
a.length += 10; // error
a = b; // error

}
a = null; // ok

A BreakStatement in the body of the foreach will exit the foreach, a Contin-
ueStatement will immediately start the next iteration.

2.9.10. Switch Statement

A switch statement goes to one of a collection of case statements depending on
the value of the switch expression.

SwitchStatement :
switch (Expression) BlockStatement

CaseStatement :
case ExpressionList : Statement

DefaultStatement :
default: Statement

Expression is evaluated. The result type T must be of integral type or char[]
or wchar[]. The result is compared against each of the case expressions. If there
is a match, the corresponding case statement is transferred to.

The case expressions, ExpressionList, are a comma separated list of expres-
sions.

If none of the case expressions match, and there is a default statement, the
default statement is transferred to.

If none of the case expressions match, and there is not a default statement, a
SwitchError is thrown. The reason for this is to catch the common programming
error of adding a new value to an enum, but failing to account for the extra value
in switch statements. This behavior is unlike C or C++.

The case expressions must all evaluate to a constant value or array, and be
implicitly convertible to the type T of the switch Expression.

Case expressions must all evaluate to distinct values. There may not be two
or more default statements.

Case statements and default statements associated with the switch can be
nested within block statements; they do not have to be in the outermost block.
For example, this is allowed:

82 2.9. Statements

switch (i)
{

case 1:
{

case 2:
}

break;
}

Like in C and C++, case statements ’fall through’ to subsequent case values.
A break statement will exit the switch BlockStatement. For example:

switch (i)
{

case 1:
x = 3;

case 2:
x = 4;
break;

case 3,4,5:
x = 5;
break;

}

will set x to 4 if i is 1.
Note: Unlike C and C++, strings can be used in switch expressions. For ex-

ample:

char[] name;
...
switch (name)
{

case "fred":
case "sally":

...
}

For applications like command line switch processing, this can lead to much
more straightforward code, being clearer and less error prone. Both ascii and
wchar strings are allowed.

Implementation Note: The compiler’s code generator may assume that the
case statements are sorted by frequency of use, with the most frequent appear-
ing first and the least frequent last. Although this is irrelevant as far as program
correctness is concerned, it is of performance interest.

Chapter 2. The Language 83

2.9.11. Continue Statement

A continue aborts the current iteration of its enclosing loop statement, and starts
the next iteration.

ContinueStatement :
continue;
continue Identifier ;

continue executes the next iteration of its innermost enclosing while, for, or
do loop. The increment clause is executed.

If continue is followed by Identifier, the Identifier must be the label of an en-
closing while, for, or do loop, and the next iteration of that loop is executed. It is
an error if there is no such statement.

Any intervening finally clauses are executed, and any intervening synchro-
nization objects are released.

Note: If a finally clause executes a return, throw, or goto out of the finally
clause, the continue target is never reached.

2.9.12. Break Statement

A break exits the enclosing statement.

BreakStatement :
break;
break Identifier ;

break exits the innermost enclosing while, for, do, or switch statement, re-
suming execution at the statement following it.

If break is followed by Identifier, the Identifier must be the label of an enclos-
ing while, for, do or switch statement, and that statement is exited. It is an error
if there is no such statement.

Any intervening finally clauses are executed, and any intervening synchro-
nization objects are released.

Note: If a finally clause executes a return, throw, or goto out of the finally
clause, the break target is never reached.

2.9.13. Return Statement

A return exits the current function and supplies its return value.

ReturnStatement :
return;
return Expression ;

84 2.9. Statements

Expression is required if the function specifies a return type that is not void.
The Expression is implicitly converted to the function return type.

At least one return statement is required if the function specifies a return
type that is not void.

Expression is illegal if the function specifies a void return type.
Before the function actually returns, any enclosing finally clauses are exe-

cuted, and any enclosing synchronization objects are released.
The function will not return if any enclosing finally clause does a return, goto

or throw that exits the finally clause.
If there is an out postcondition (see design by contract), that postcondition

is executed after the Expression is evaluated and before the function actually
returns.

2.9.14. Goto Statement

A goto transfers to the statement labelled with Identifier .

GotoStatement :
goto Identifier ;
goto default ;
goto case ;
goto case Expression ;

The second form, goto default;, transfers to the innermost DefaultState-
ment of an enclosing SwitchStatement.

The third form, goto case;, transfers to the next CaseStatement of the in-
nermost enclosing SwitchStatement.

The fourth form, goto case Expression ;, transfers to the CaseStatement
of the innermost enclosing SwitchStatement with a matching Expression.

Any intervening finally clauses are executed, along with releasing any inter-
vening synchronization mutexes.

It is illegal for a goto to be used to skip initializations.

2.9.15. With Statement

The with statement is a way to simplify repeated references to the same object.

WithStatement :
with (Expression) BlockStatement
with (TemplateInstance) BlockStatement

where Expression evaluates to an Object reference. Within the with body the
referenced Object is searched first for identifier symbols. The with statement

Chapter 2. The Language 85

with (expression)
{

...
ident;

}

is semantically equivalent to:

{
Object tmp;
tmp = expression;

...
tmp.ident;

}

Note that expression only gets evaluated once. The with statement does not
change what this or super refer to.

2.9.16. Synchronize Statement

The synchronize statement wraps a statement with critical section to synchro-
nize access among multiple threads.

SynchronizeStatement :
synchronized Statement
synchronized (Expression) Statement

synchronized allows only one thread at a time to execute Statement.
synchronized (Expression), where Expression evaluates to an Object refer-

ence, allows only one thread at a time to use that Object to execute the State-
ment.

The synchronization gets released even if Statement terminates with an ex-
ception, goto, or return.

Example:

synchronized {... }

This implements a standard critical section.

2.9.17. Try Statement

Exception handling is done with the try-catch-finally statement.

86 2.9. Statements

TryStatement :
try BlockStatement Catches
try BlockStatement Catches finally BlockStatement
try BlockStatement finally BlockStatement

Catches :
LastCatch
Catch
Catch Catches

LastCatch :
catch BlockStatement

Catch :
catch (Parameter) BlockStatement

Parameter declares a variable v of type T, where T is Object or derived from
Object. v is initialized by the throw expression if T is of the same type or a base
class of the throw expression. The catch clause will be executed if the exception
object is of type T or derived from T.

If just type T is given and no variable v, then the catch clause is still executed.
It is an error if any Catch Parameter type T1 hides a subsequent Catch with

type T2, i.e. it is an error if T1 is the same type as or a base class of T2.
LastCatch catches all exceptions.

2.9.18. Throw Statement

Throw an exception.

ThrowStatement :
throw Expression ;

Expression is evaluated and must be an Object reference. The Object refer-
ence is thrown as an exception.

2.9.19. Volatile Statement

Do not cache values across volatile statement boundaries.

VolatileStatement :
volatile Statement

Statement is evaluated, and no common subexpressions or memory refer-
ences cached in registers are propagated either into it or out of it. This is use-
ful for accessing memory that can change asynchronously, such as memory
mapped I/O or memory accessed by multiple threads.

Chapter 2. The Language 87

A volatile statement does not guarantee atomicity. For that, use synchro-
nized statements.

2.9.20. Asm Statement

Inline assembler is supported with the asm statement:

AsmStatement :
asm { }
asm { AsmInstructionList }

AsmInstructionList :
AsmInstruction ;
AsmInstruction ; AsmInstructionList

An asm statement enables the direct use of assembly language instructions.
This makes it easy to obtain direct access to special CPU features without re-
sorting to an external assembler. The D compiler will take care of the function
calling conventions, stack setup, etc.

The format of the instructions is, of course, highly dependent on the native
instruction set of the target CPU, and so is implementation defined. But, the
format will followthe following conventions:

• It must use the same tokens as the D language uses.

• The comment form must match the D language comments.

• Asm instructions are terminated by a ;, not by an end of line.

These rules exist to ensure that D source code can be tokenized indepen-
dently of syntactic or semantic analysis.

For example, for the Intel Pentium:

int x = 3;
asm
{

mov EAX,x; // load x and put it in register EAX
}

Inline assembler can be used to access hardware directly:

int gethardware()
{

asm
{

mov EAX, dword ptr 0x1234;
}

}

88 2.10. Arrays

For some D implementations, such as a translator from D to C, an inline as-
sembler makes no sense, and need not be implemented. The version statement
can be used to account for this:

version (InlineAsm)
{

asm
{

...
}

}
else
{

... some workaround...
}

2.10.
Arrays

There are four kinds of arrays:
int* p; Pointers to data
int[3] s; Static arrays
int[] a; Dynamic arrays
int[char[]] x; Associative arrays (discussed later)

Pointers

int* p;

These are simple pointers to data, analogous to C pointers. Pointers are
provided for interfacing with C and for specialized systems work. There is no
length associated with it, and so there is no way for the compiler or runtime
to do bounds checking, etc., on it. Most conventional uses for pointers can be
replaced with dynamic arrays, out and inout parameters, and handles (refer-
ences).

Static Arrays

int[3] s;

These are analogous to C arrays. Static arrays are distinguished by having a
length fixed at compile time.

Chapter 2. The Language 89

Dynamic Arrays

int[] a;

Dynamic arrays contain a length and a garbage collected pointer to the array
data.

2.10.1. Array Declarations

There are two ways to declare arrays, prefix and postfix. The prefix form is the
preferred method, especially for non-trivial types.

Prefix Array Declarations Prefix declarations appear before the identifier be-
ing declared and read right to left, so:

int[] a; // dynamic array of ints
int[4][3] b; // array of 3 arrays of 4 ints each
int[][5] c; // array of 5 dynamic arrays of ints.
int*[]*[3] d; // array of 3 pointers to dynamic arrays of pointers to ints
int[]* e; // pointer to dynamic array of ints

Postfix Array Declarations Postfix declarations appear after the identifier be-
ing declared and read left to right. Each group lists equivalent declarations:

// dynamic array of ints
int[] a;
int a[];

// array of 3 arrays of 4 ints each
int[4][3] b;
int[4] b[3];
int b[3][4];

// array of 5 dynamic arrays of ints.
int[][5] c;
int[] c[5];
int c[5][];

// array of 3 pointers to dynamic arrays of pointers to ints
int*[]*[3] d;
int*[]* d[3];
int* (*d[3])[];

// pointer to dynamic array of ints
int[]* e;
int (*e[]);

90 2.10. Arrays

Rationale: The postfix form matches the way arrays are declared in C and
C++, and supporting this form provides an easy migration path for program-
mers used to it.

2.10.2. Usage

There are two broad kinds of operations to do on an array - affecting the handle
to the array, and affecting the contents of the array. C only has operators to
affect the handle. In D, both are accessible.

The handle to an array is specified by naming the array, as in p, s or a:

int* p;
int[3] s;
int[] a;

int* q;
int[3] t;
int[] b;

p = q; p points to the same thing q does.
p = s; p points to the first element of the array s.
p = a; p points to the first element of the array a.

s =...; error, since s is a compiled in static
reference to an array.

a = p; error, since the length of the array pointed
to by p is unknown

a = s; a is initialized to point to the s array
a = b; a points to the same array as b does

2.10.3. Slicing

Slicing an array means to specify a subarray of it. For example:

int[10] a; declare array of 10 ints
int[] b;

b = a[1..3]; a[1..3] is a 2 element array consisting of
a[1] and a[2]

The [] is shorthand for a slice of the entire array. For example, the assign-
ments to b:

int[10] a;
int[] b;

Chapter 2. The Language 91

b = a;
b = a[];
b = a[0.. a.length];

are all semantically equivalent.
Slicing is not only handy for referring to parts of other arrays, but for con-

verting pointers into bounds-checked arrays:

int* p;
int[] b = p[0..8];

2.10.4. Array Copying

When the slice operator appears as the lvalue of an assignment expression, it
means that the contents of the array are the target of the assignment rather
than a reference to the array. Array copying happens when the lvalue is a slice,
and the rvalue is an array of or pointer to the same type.

int[3] s;
int[3] t;

s[] = t; the 3 elements of t[3] are copied into s[3]
s[] = t[]; the 3 elements of t[3] are copied into s[3]
s[1..2] = t[0..1]; same as s[1] = t[0]
s[0..2] = t[1..3]; same as s[0] = t[1], s[1] = t[2]
s[0..4] = t[0..4]; error, only 3 elements in s
s[0..2] = t; error, different lengths for lvalue and rvalue

Overlapping copies are an error:

s[0..2] = s[1..3]; error, overlapping copy
s[1..3] = s[0..2]; error, overlapping copy

Disallowing overlapping makes it possible for more aggressive parallel code
optimizations than possible with the serial semantics of C.

2.10.5. Array Setting

If a slice operator appears as the lvalue of an assignment expression, and the
type of the rvalue is the same as the element type of the lvalue, then the lvalue’s
array contents are set to the rvalue.

int[3] s;
int* p;

s[] = 3; same as s[0] = 3, s[1] = 3, s[2] = 3
p[0..2] = 3; same as p[0] = 3, p[1] = 3

92 2.10. Arrays

2.10.6. Array Concatenation

The binary operator ˜ is the cat operator. It is used to concatenate arrays:

int[] a;
int[] b;
int[] c;

a = b ˜ c; Create an array from the concatenation of the
b and c arrays

Many languages overload the + operator to mean concatenation. This con-
fusingly leads to, does:

"10" + 3

produce the number 13 or the string "103" as the result? It isn’t obvious,
and the language designers wind up carefully writing rules to disambiguate it
- rules that get incorrectly implemented, overlooked, forgotten, and ignored.
It’s much better to have + mean addition, and a separate operator to be array
concatenation.

Similarly, the ˜= operator means append, as in:

a ˜= b; a becomes the concatenation of a and b

Concatenation always creates a copy of its operands, even if one of the operands
is a 0 length array, so:

a = b a refers to b
a = b ˜ c[0..0] a refers to a copy of b

2.10.7. Array Operations

In general, (a[n..m] op e) is defined as:

for (i = n; i < m; i++)
a[i] op e;

So, for the expression:

a[] = b[] + 3;

Chapter 2. The Language 93

the result is equivalent to:

for (i = 0; i < a.length; i++)
a[i] = b[i] + 3;

When more than one [] operator appears in an expression, the range repre-
sented by all must match.

a[1..3] = b[] + 3; error, 2 elements not same as 3 elements

Examples:

int[3] abc; // static array of 3 ints
int[] def = { 1, 2, 3 } ; // dynamic array of 3 ints

void dibb(int *array)
{

array[2]; // means same thing as *(array + 2)
*(array + 2); // get 2nd element

}

void diss(int[] array)
{

array[2]; // ok
*(array + 2); // error, array is not a pointer

}

void ditt(int[3] array)
{

array[2]; // ok
*(array + 2); // error, array is not a pointer

}

2.10.8. Rectangular Arrays

Experienced FORTRAN numerics programmers know that multidimensional "rect-
angular" arrays for things like matrix operations are much faster than trying to
access them via pointers to pointers resulting from "array of pointers to array"
semantics. For example, the D syntax:

double[][] matrix;

declares matrix as an array of pointers to arrays. (Dynamic arrays are imple-
mented as pointers to the array data.) Since the arrays can have varying sizes
(being dynamically sized), this is sometimes called "jagged" arrays. Even worse

94 2.10. Arrays

for optimizing the code, the array rows can sometimes point to each other! For-
tunately, D static arrays, while using the same syntax, are implemented as a fixed
rectangular layout:

double[3][3] matrix;

declares a rectangular matrix with 3 rows and 3 columns, all contiguously in
memory. In other languages, this would be called a multidimensional array and
be declared as:

double matrix[3,3];

2.10.9. Array Properties

Static array properties are:
size Returns the array length multiplied by the number of bytes per

array element.
length Returns the number of elements in the array. This is a fixed

quantity for static arrays.
dup Create a dynamic array of the same size and copy the contents

of the array into it.
reverse Reverses in place the order of the elements in the array. Returns

the array.
sort Sorts in place the order of the elements in the array. Returns

the array.
Dynamic array properties are:

size Returns the size of the dynamic array reference, which is 8 on
32 bit machines.

length Get/set number of elements in the array.
dup Create a dynamic array of the same size and copy the contents

of the array into it.
reverse Reverses in place the order of the elements in the array. Returns

the array.
sort Sorts in place the order of the elements in the array. Returns

the array.
Examples:

p.length error, length not known for pointer
s.length compile time constant 3
a.length runtime value

p.dup error, length not known
s.dup creates an array of 3 elements, copies

elements s into it

Chapter 2. The Language 95

a.dup creates an array of a.length elements, copies
elements of a into it

Setting Dynamic Array Length

The .length property of a dynamic array can be set as the lvalue of an = opera-
tor:

array.length = 7;

This causes the array to be reallocated in place, and the existing contents
copied over to the new array. If the new array length is shorter, only enough are
copied to fill the new array. If the new array length is longer, the remainder is
filled out with the default initializer.

To maximize efficiency, the runtime always tries to resize the array in place
to avoid extra copying. It will always do a copy if the new size is larger and the
array was not allocated via the new operator or a previous resize operation.

This means that if there is an array slice immediately following the array be-
ing resized, the resized array could overlap the slice; i.e.:

char[] a = new char[20];
char[] b = a[0..10];
char[] c = a[10..20];

b.length = 15; // always resized in place because it is sliced
// from a[] which has enough memory for 15 chars

b[11] = ’x’; // a[15] and c[5] are also affected

a.length = 1;
a.length = 20; // no net change to memory layout

c.length = 12; // always does a copy because c[] is not at the
// start of a gc allocation block

c[5] = ’y’; // does not affect contents of a[] or b[]

a.length = 25; // may or may not do a copy
a[3] = ’z’; // may or may not affect b[3] which still overlaps

// the old a[3]

To guarantee copying behavior, use the.dup property to ensure a unique
array that can be resized.

These issues also apply to concatenting arrays with the ˜ and ˜= operators.
Resizing a dynamic array is a relatively expensive operation. So, while the

following method of filling an array:

96 2.10. Arrays

int[] array;
while (1)
{ c = getinput();

if (!c)
break;

array.length = array.length + 1;
array[array.length - 1] = c;

}

will work, it will be efficient. A more practical approach would be to mini-
mize the number of resizes:

int[] array;
array.length = 100; // guess
for (i = 0; 1; i++)
{ c = getinput();

if (!c)
break;

if (i == array.length)
array.length = array.length * 2;

array[i] = c;
}
array.length = i;

Picking a good initial guess is an art, but you usually can pick a value cover-
ing 99% of the cases. For example, when gathering user input from the console
- it’s unlikely to be longer than 80.

2.10.10. Array Bounds Checking

It is an error to index an array with an index that is less than 0 or greater than or
equal to the array length. If an index is out of bounds, an ArrayBoundsError ex-
ception is raised if detected at runtime, and an error if detected at compile time.
A program may not rely on array bounds checking happening, for example, the
following program is incorrect:

try
{

for (i = 0; ; i++)
{

array[i] = 5;
}

}
catch (ArrayBoundsError)
{

// terminate loop
}

Chapter 2. The Language 97

The loop is correctly written:

for (i = 0; i < array.length; i++)
{

array[i] = 5;
}

Implementation Note: Compilers should attempt to detect array bounds
errors at compile time, for example:

int[3] foo;
int x = foo[3]; // error, out of bounds

Insertion of array bounds checking code at runtime should be turned on and
off with a compile time switch.

2.10.11. Array Initialization

• Pointers are initialized to null.

• Static array contents are initialized to the default initializer for the array
element type.

• Dynamic arrays are initialized to having 0 elements.

• Associative arrays are initialized to having 0 elements.

Static Initialization of Static Arrays

int[3] a = [1:2, 3]; // a[0] = 0, a[1] = 2, a[2] = 3

This is most handy when the array indices are given by enums:

enum Color { red, blue, green } ;

int value[Color.max] = [blue:6, green:2, red:5];

If any members of an array are initialized, they all must be. This is to catch
common errors where another element is added to an enum, but one of the
static instances of arrays of that enum was overlooked in updating the initializer
list.

98 2.10. Arrays

2.10.12. Special Array Types

Arrays of Bits

Bit vectors can be constructed:

bit[10] x; // array of 10 bits

The amount of storage used up is implementation dependent. Implemen-
tation Note: on Intel CPUs it would be rounded up to the next 32 bit size.

x.length // 10, number of bits
x.size // 4, bytes of storage

So, the size per element is not (x.size / x.length).

Strings

Languages should be good at handling strings. C and C++ are not good at
it. The primary difficulties are memory management, handling of temporaries,
constantly rescanning the string looking for the terminating 0, and the fixed ar-
rays.

Dynamic arrays in D suggest the obvious solution - a string is just a dynamic
array of characters. String literals become just an easy way to write character
arrays.

char[] str;
char[] str1 = "abc";

char[] strings are in UTF-8 format. wchar[] strings are in UTF-16 format. dchar[]
strings are in UTF-32 format.

Strings can be copied, compared, concatenated, and appended:

str1 = str2;
if (str1 < str3)...
func(str3 ˜ str4);
str4 ˜= str1;

with the obvious semantics. Any generated temporaries get cleaned up by
the garbage collector (or by using alloca()). Not only that, this works with any
array not just a special String array.

A pointer to a char can be generated:

Chapter 2. The Language 99

char *p = &str[3]; // pointer to 4th element
char *p = str; // pointer to 1st element

Since strings, however, are not 0 terminated in D, when transfering a pointer
to a string to C, add a terminating 0:

str ˜= " 0";

The type of a string is determined by the semantic phase of compilation. The
type is one of: char[], wchar[], dchar[], and is determined by implicit conversion
rules. If there are two equally applicable implicit conversions, the result is an
error. To disambiguate these cases, a cast is approprate:

(wchar [])"abc" // this is an array of wchar characters

String literals are implicitly converted between chars, wchars, and dchars as
necessary.

Strings a single character in length can also be exactly converted to a char,
wchar or dchar constant:

char c;
wchar w;
dchar d;

c = ’b’; // c is assigned the character ’b’
w = ’b’; // w is assigned the wchar character ’b’
w = ’bc’; // error - only one wchar character at a time
w = "b"[0]; // w is assigned the wchar character ’b’
w = r; // w is assigned the carriage return wchar character
d = ’d’; // d is assigned the character ’d’

printf() and Strings printf() is a C function and is not part of D. printf() will
print C strings, which are 0 terminated. There are two ways to use printf() with
D strings. The first is to add a terminating 0, and cast the result to a char*:

str ˜= " 0";
printf("the string is ’%s’ n", (char *)str);

The second way is to use the precision specifier. The way D arrays are laid
out, the length comes first, so the following works:

printf("the string is ’%.*s’ n", str);

In the future, it may be necessary to just add a new format specifier to printf()
instead of relying on an implementation dependent detail.

100 2.10. Arrays

Implicit Conversions

A pointer T * can be implicitly converted to one of the following:

• U* where U is a base class of T.

• void*

A static array T [dim] can be implicitly converted to one of the following:

• T*

• T[]

• U[dim] where U is a base class of T.

• U [] where U is a base class of T.

• U* where U is a base class of T.

• void*

• void[]

A dynamic array T [] can be implicitly converted to one of the following:

• T*

• U[] where U is a base class of T.

• U* where U is a base class of T.

• void*

2.10.13. Associative Arrays

D goes one step further with arrays - adding associative arrays. Associative ar-
rays have an index that is not necessarilly an integer, and can be sparsely popu-
lated. The index for an associative array is called the key.

Associative arrays are declared by placing the key type within the [] of an
array declaration:

int[char[]] b; // associative array b of ints that are
// indexed by an array of characters

b["hello"] = 3; // set value associated with key "hello" to 3
func(b["hello"]); // pass 3 as parameter to func()

Particular keys in an associative array can be removed with the delete oper-
ator:

Chapter 2. The Language 101

delete b["hello"];

This confusingly appears to delete the value of b["hello"], but does not, it
removes the key "hello" from the associative array.

The InExpression yields a boolean result indicating if a key is in an associative
array or not:

if ("hello" in b)
...

Key types cannot be functions or voids.

Properties

Properties for associative arrays are:
size Returns the size of the reference to the associative array; it is

typically 8.
length Returns number of values in the associative array. Unlike for

dynamic arrays, it is read-only.
keys Returns dynamic array, the elements of which are the keys in

the associative array.
values Returns dynamic array, the elements of which are the values in

the associative array.
rehash Reorganizes the associative array in place so that lookups are

more efficient. rehash is effective when, for example, the pro-
gram is done loading up a symbol table and now needs fast
lookups in it. Returns a reference to the reorganized array.

Associative Array Example: word count

import std.file; // D file I/O

int main (char[][] args)
{

int word_total;
int line_total;
int char_total;
int[char[]] dictionary;

printf(" lines words bytes file n");
for (int i = 1; i < args.length; ++i) // program arguments
{

char[] input; // input buffer
int w_cnt, l_cnt, c_cnt; // word, line, char counts
int inword;
int wstart;

102 2.10. Arrays

input = std.file.read(args[i]); // read file into input[]

foreach (char c; input)
{

if (c == ’ n’)
++l_cnt;

if (c >= ’0’ & & c <= ’9’)
{
}
else if (c >= ’a’ & & c <= ’z’ ||

c >= ’A’ & & c <= ’Z’)
{

if (!inword)
{

wstart = j;
inword = 1;
++w_cnt;

}
}
else if (inword)
{ char[] word = input[wstart.. j];

dictionary[word]++; // increment count for word
inword = 0;

}
++c_cnt;

}
if (inword)
{ char[] word = input[wstart.. input.length];

dictionary[word]++;
}
printf("%8ld%8ld%8ld %.*s n", l_cnt, w_cnt, c_cnt, args[i]);
line_total += l_cnt;
word_total += w_cnt;
char_total += c_cnt;

}

if (args.length > 2)
{

printf("------------------------------------- n%8ld%8ld%8ld total",
line_total, word_total, char_total);

}

printf("------------------------------------- n");
char[][] keys = dictionary.keys; // find all words in dictionary[]
for (int i = 0; i < keys.length; i++)
{ char[] word;

word = keys[i];
printf("%3d %.*s n", dictionary[word], word);

}
return 0;

}

Chapter 2. The Language 103

2.11.
Structs, Unions, Enums

2.11.1. Structs, Unions

AggregateDeclaration :
Tag { DeclDefs }
Tag Identifier { DeclDefs }
Tag Identifier ;

Tag :
struct
union

They work like they do in C, with the following exceptions:

• no bit fields

• alignment can be explicitly specified

• no separate tag name space - tag names go into the current scope

• declarations like:

struct ABC x;

are not allowed, replace with:

ABC x;

• anonymous structs/unions are allowed as members of other structs/unions

• Default initializers for members can be supplied.

• Member functions and static members are allowed.

Structs and unions are meant as simple aggregations of data, or as a way to
paint a data structure over hardware or an external type. External types can be
defined by the operating system API, or by a file format. Object oriented features
are provided with the class data type.

104 2.11. Structs, Unions, Enums

Static Initialization of Structs

Static struct members are by default initialized to 0, and floating point values to
NAN. If a static initializer is supplied, the members are initialized by the member
name, colon, expression syntax. The members may be initialized in any order.

struct X { int a; int b; int c; int d = 7;}
static X x = { a:1, b:2} ; // c is set to 0, d to 7
static X z = { c:4, b:5, a:2, d:5} ; // z.a = 2, z.b = 5, z.c = 4, d = 5

Static Initialization of Unions

Unions are initialized explicitly.

union U { int a; double b; }
static U u = { b : 5.0 } ; // u.b = 5.0

Other members of the union that overlay the initializer, but occupy more
storage, have the extra storage initialized to zero.

Struct Properties

.sizeof Size in bytes of struct

.size Same as.sizeof

.alignof Size boundary struct needs to be aligned on

2.11.2. Enums

EnumDeclaration :
enum identifier { EnumMembers }
enum { EnumMembers }
enum identifier ;

EnumMembers :
EnumMember
EnumMember ,
EnumMember , EnumMembers

EnumMember :
Identifier
Identifier = Expression

Enums replace the usual C use of #define macros to define constants. Enums
can be either anonymous, in which case they simply define integral constants,
or they can be named, in which case they introduce a new type.

Chapter 2. The Language 105

enum { A, B, C } // anonymous enum

Defines the constants A=0, B=1, C=2 in a manner equivalent to:

const int A = 0;
const int B = 1;
const int C = 2;

Whereas:

enum X { A, B, C } // named enum

Define a new type X which has values X.A=0, X.B=1, X.C=2
Named enum members can be implicitly cast to integral types, but integral

types cannot be implicitly cast to an enum type.
Enums must have at least one member.
If an Expression is supplied for an enum member, the value of the member is

set to the result of the Expression . The Expression must be resolvable at compile
time. Subsequent enum members with no Expression are set to the value of the
previous member plus one:

enum { A, B = 5+7, C, D = 8, E }

Sets A=0, B=12, C=13, D=8, and E=9.

Enum Properties

.min Smallest value of enum

.max Largest value of enum

.sizeof Size of storage for an enumerated value

For example:

X.min is X.A
X.max is X.C
X.sizeof is same as int.sizeof

Initialization of Enums

In the absense of an explicit initializer, an enum variable is initialized to the first
enum value.

enum X { A=3, B, C }
X x; // x is initialized to 3

106 2.12. Classes

2.12.
Classes

The object-oriented features of D all come from classes. The class heirarchy has
as its root the class Object. Object defines a minimum level of functionality that
each derived class has, and a default implementation for that functionality.

Classes are programmer defined types. Support for classes are what make D
an object oriented language, giving it encapsulation, inheritance, and polymor-
phism. D classes support the single inheritance paradigm, extended by adding
support for interfaces. Class objects are instantiated by reference only.

A class can be exported, which means its name and all its non-private mem-
bers are exposed externally to the DLL or EXE.

A class declaration is defined:

ClassDeclaration :
class Identifier [SuperClass {, InterfaceClass }] ClassBody

SuperClass :
: Identifier

InterfaceClass :
Identifier

ClassBody :
{ ClassBodyDeclarations }

ClassBodyDeclaration :
Declaration
Constructor
Destructor
StaticConstructor
StaticDestructor
Invariant
UnitTest
ClassAllocator
ClassDeallocator

Classes consist of:

• super class

• interfaces

• dynamic fields

• static fields

• types

Chapter 2. The Language 107

• functions

– static functions

– dynamic functions

– constructors

– destructors

– static constructors

– static destructors

– invariants

– unit tests

– allocators

– deallocators

A class is defined:

class Foo
{

... members...
}

Note that there is no trailing ; after the closing } of the class definition. It is
also not possible to declare a variable var like:

class Foo { } var;

Instead:

class Foo { }
Foo var;

Fields

Class members are always accessed with the. operator. There are no :: or ->
operators as in C++.

The D compiler is free to rearrange the order of fields in a class to optimally
pack them in an implementation-defined manner. Hence, alignment statements,
anonymous structs, and anonymous unions are not allowed in classes because
they are data layout mechanisms. Consider the fields much like the local vari-
ables in a function - the compiler assigns some to registers and shuffles others
around all to get the optimal stack frame layout. This frees the code designer to
organize the fields in a manner that makes the code more readable rather than
being forced to organize it according to machine optimization rules. Explicit
control of field layout is provided by struct/union types, not classes.

108 2.12. Classes

Super Class

All classes inherit from a super class. If one is not specified, it inherits from Ob-
ject. Object forms the root of the D class inheritance heirarchy.

Constructors

Constructor :
this() BlockStatement

Members are always initialized to the default initializer for their type, which
is usually 0 for integer types and NAN for floating point types. This eliminates
an entire class of obscure problems that come from neglecting to initialize a
member in one of the constructors. In the class definition, there can be a static
initializer to be used instead of the default:

class Abc
{

int a; // default initializer for a is 0
long b = 7; // default initializer for b is 7
float f; // default initializer for f is NAN

}

This static initialization is done before any constructors are called.
Constructors are defined with a function name of this and having no return

value:

class Foo
{

this (int x) // declare constructor for Foo
{ ...
}
this ()
{ ...
}

}

Base class construction is done by calling the base class constructor by the
name super :

class A { this(int y) { } }

class B : A
{

int j;
this()

Chapter 2. The Language 109

{
...
super (3); // call base constructor A.this(3)

...
}

}

Constructors can also call other constructors for the same class in order to
share common initializations:

class C
{

int j;
this()
{

...
}
this(int i)
{

this ();
j = i;

}
}

If no call to constructors via this or super appear in a constructor, and the
base class has a constructor, a call to super () is inserted at the beginning of the
constructor.

If there is no constructor for a class, but there is a constructor for the base
class, a default constructor of the form:

this() { }

is implicitly generated.
Class object construction is very flexible, but some restrictions apply:

1. It is illegal for constructors to mutually call each other:

this() { this(1); }
this(int i) { this(); } // illegal, cyclic constructor calls

2. If any constructor call appears inside a constructor, any path through the
constructor must make exactly one constructor call:

this() { a || super(); } // illegal

this() { this(1) || super(); } // ok

110 2.12. Classes

this()
{

for (...)
{

super(); // illegal, inside loop
}

}

3. It is illegal to refer to this implicitly or explicitly prior to making a construc-
tor call.

4. Constructor calls cannot appear after labels (in order to make it easy to
check for the previous conditions in the presence of goto’s).

Instances of class objects are created with NewExpression s:

A a = new A(3);

The following steps happen:

1. Storage is allocated for the object. If this fails, rather than return null, an
OutOfMemoryException is thrown. Thus, tedious checks for null refer-
ences are unnecessary.

2. The raw data is statically initialized using the values provided in the class
definition. The pointer to the vtbl is assigned. This ensures that construc-
tors are passed fully formed objects. This operation is equivalent to doing
a memcpy() of a static version of the object onto the newly allocated one,
although more advanced compilers may be able to optimize much of this
away.

3. If there is a constructor defined for the class, the constructor matching the
argument list is called.

4. If class invariant checking is turned on, the class invariant is called at the
end of the constructor.

Destructors

Destructor :
˜this() BlockStatement

The garbage collector calls the destructor function when the object is deleted.
The syntax is:

Chapter 2. The Language 111

class Foo
{

˜this() // destructor for Foo
{
}

}

There can be only one destructor per class, the destructor does not have any
parameters, and has no attributes. It is always virtual.

The destructor is expected to release any resources held by the object.
The program can explicitly inform the garbage collector that an object is no

longer referred to (with the delete expression), and then the garbage collector
calls the destructor immediately, and adds the object’s memory to the free stor-
age. The destructor is guaranteed to never be called twice.

The destructor for the super class automatically gets called when the de-
structor ends. There is no way to call the super destructor explicitly.

Static Constructors

StaticConstructor :
static this() BlockStatement

A static constructor is defined as a function that performs initializations be-
fore the main() function gets control. Static constructors are used to initialize
static class members with values that cannot be computed at compile time.

Static constructors in other languages are built implicitly by using member
initializers that can’t be computed at compile time. The trouble with this stems
from not having good control over exactly when the code is executed, for exam-
ple:

class Foo
{

static int a = b + 1;
static int b = a * 2;

}

What values do a and b end up with, what order are the initializations exe-
cuted in, what are the values of a and b before the initializations are run, is this a
compile error, or is this a runtime error? Additional confusion comes from it not
being obvious if an initializer is static or dynamic.

D makes this simple. All member initializations must be determinable by the
compiler at compile time, hence there is no order-of-evaluation dependency for
member initializations, and it is not possible to read a value that has not been
initialized. Dynamic initialization is performed by a static constructor, defined
with a special syntax static this().

112 2.12. Classes

class Foo
{

static int a; // default initialized to 0
static int b = 1;
static int c = b + a; // error, not a constant initializer

static this() // static constructor
{

a = b + 1; // a is set to 2
b = a * 2; // b is set to 4

}
}

static this() is called by the startup code before main() is called. If it
returns normally (does not throw an exception), the static destructor is added
to the list of function to be called on program termination. Static constructors
have empty parameter lists.

A current weakness of the static constructors is that the order in which they
are called is not defined. Hence, for the time being, write the static constructors
to be order independent. This problem needs to be addressed in future versions.

Static Destructor

StaticDestructor :
static ˜this() BlockStatement

A static destructor is defined as a special static function with the syntax
static ˜this().

class Foo
{

static ˜this() // static destructor
{
}

}

A static constructor gets called on program termination, but only if the static
constructor completed successfully. Static destructors have empty parameter
lists. Static destructors get called in the reverse order that the static constructors
were called in.

Class Invariants

ClassInvariant :
invariant BlockStatement

Chapter 2. The Language 113

Class invariants are used to specify characteristics of a class that always must
be true (except while executing a member function). For example, a class repre-
senting a date might have an invariant that the day must be 1..31 and the hour
must be 0..23:

class Date
{

int day;
int hour;

invariant
{

assert(1 <= day & & day <= 31);
assert(0 <= hour & & hour < 24);

}
}

The class invariant is a contract saying that the asserts must hold true. The
invariant is checked when a class constructor completes, at the start of the class
destructor, before a public or exported member is run, and after a public or ex-
ported function finishes. The invariant can be checked when a class object is the
argument to an assert() expression, as:

Date mydate;
...
assert(mydate); // check that class Date invariant holds

If the invariant fails, it throws an InvariantException. Class invariants are
inherited, that is, any class invariant is implicitly anded with the invariants of its
base classes.

There can be only one ClassInvariant per class.
When compiling for release, the invariant code is not generated, and the

compiled program runs at maximum speed.

Unit Tests

UnitTest :
unittest BlockStatement

Unit tests are a series of test cases applied to a class to determine if it is work-
ing properly. Ideally, unit tests should be run every time a program is compiled.
The best way to make sure that unit tests do get run, and that they are main-
tained along with the class code is to put the test code right in with the class
implementation code.

D classes can have a special member function called:

114 2.12. Classes

unittest
{

...test code...
}

The test() functions for all the classes in the program get called after static
initialization is done and before the main function is called. A compiler or linker
switch will remove the test code from the final build.

For example, given a class Sum that is used to add two values:

class Sum
{

int add(int x, int y) { return x + y; }

unittest
{

assert(add(3,4) == 7);
assert(add(-2,0) == -2);

}
}

Class Allocators

ClassAllocator :
new ParameterList BlockStatement

A class member function of the form:

new(uint size)
{

...
}

is called a class allocator. The class allocator can have any number of pa-
rameters, provided the first one is of type uint. Any number can be defined for
a class, the correct one is determined by the usual function overloading rules.
When a new expression:

new Foo;

is executed, and Foo is a class that has an allocator, the allocator is called
with the first argument set to the size in bytes of the memory to be allocated for
the instance. The allocator must allocate the memory and return it as a void*.
If the allocator fails, it must not return a null, but must throw an exception. If
there is more than one parameter to the allocator, the additional arguments are
specified within parentheses after the new in the NewExpression:

Chapter 2. The Language 115

class Foo
{

this(char[] a) {... }

new(uint size, int x, int y)
{

...
}

}

...

new(1,2) Foo(a); // calls new(Foo.size,1,2)

Derived classes inherit any allocator from their base class, if one is not spec-
ified.

See also Explicit Class Instance Allocation.

Class Deallocators

ClassDeallocator :
delete ParameterList BlockStatement

A class member function of the form:

delete(void *p)
{

...
}

is called a class deallocator. The deallocator must have exactly one parame-
ter of type void*. Only one can be specified for a class. When a delete expres-
sion:

delete f;

is executed, and f is a reference to a class instance that has a deallocator, the
deallocator is called with a pointer to the class instance after the destructor (if
any) for the class is called. It is the responsibility of the deallocator to free the
memory.

Derived classes inherit any deallocator from their base class, if one is not
specified.

See also Explicit Class Instance Allocation.

116 2.13. Interfaces

Auto Classes

An auto class is a class with the auto attribute, as in:

auto class Foo {... }

The auto characteristic is inherited, so if any classes derived from an auto
class are also auto.

An auto class reference can only appear as a function local variable. It must
be declared as being auto :

auto class Foo {... }

void func()
{

Foo f; // error, reference to auto class must be auto
auto Foo g = new Foo(); // correct

}

When an auto class reference goes out of scope, the destructor (if any) for it
is automatically called. This holds true even if the scope was exited via a thrown
exception.

2.13.
Interfaces

InterfaceDeclaration :
interface Identifier InterfaceBody
interface Identifier : SuperInterfaces InterfaceBody

SuperInterfaces
Identifier
Identifier , SuperInterfaces

InterfaceBody :
{ DeclDefs }

Interfaces describe a list of functions that a class that inherits from the inter-
face must implement. A class that implements an interface can be converted to
a reference to that interface. Interfaces correspond to the interface exposed by
operating system objects, like COM/OLE/ActiveX for Win32.

Interfaces cannot derive from classes; only from other interfaces. Classes
cannot derive from an interface multiple times.

Chapter 2. The Language 117

interface D
{

void foo();
}

class A : D, D // error, duplicate interface
{
}

An instance of an interface cannot be created.

interface D
{

void foo();
}

...

D d = new D(); // error, cannot create instance of interface

Interface member functions do not have implementations.

interface D
{

void bar() { } // error, implementation not allowed
}

All interface functions must be defined in a class that inherits from that in-
terface:

interface D
{

void foo();
}

class A : D
{

void foo() { } // ok, provides implementation
}

class B : D
{

int foo() { } // error, no void foo() implementation
}

Interfaces can be inherited and functions overridden:

118 2.13. Interfaces

interface D
{

int foo();
}

class A : D
{

int foo() { return 1; }
}

class B : A
{

int foo() { return 2; }
}

...

B b = new B();
b.foo(); // returns 2
D d = (D) b; // ok since B inherits A’s D implementation
d.foo(); // returns 2;

Interfaces can be reimplemented in derived classes:

interface D
{

int foo();
}

class A : D
{

int foo() { return 1; }
}

class B : A, D
{

int foo() { return 2; }
}

...

B b = new B();
b.foo(); // returns 2
D d = (D) b;
d.foo(); // returns 2
A a = (A) b;
D d2 = (D) a;
d2.foo(); // returns 2, even though it is A’s D, not B’s D

A reimplemented interface must implement all the interface functions, it
does not inherit them from a super class:

Chapter 2. The Language 119

interface D
{

int foo();
}

class A : D
{

int foo() { return 1; }
}

class B : A, D
{
} // error, no foo() for interface D

2.14.
Functions

Virtual Functions

All non-static non-private member functions are virtual. This may sound ineffi-
cient, but since the D compiler knows all of the class heirarchy when generating
code, all functions that are not overridden can be optimized to be non-virtual.
In fact, since C++ programmers tend to "when in doubt, make it virtual", the D
way of "make it virtual unless we can prove it can be made non-virtual" results
on average much more direct function calls. It also results in fewer bugs caused
by not declaring a function virtual that gets overridden.

Functions with non-D linkage cannot be virtual, and hence cannot be over-
ridden.

Functions marked as final may not be overridden in a derived class, unless
they are also private. For example:

class A
{

int def() {... }
final int foo() {... }
final private int bar() {... }
private int abc() {... }

}

class B : A
{

int def() {... } // ok, overrides A.def
int bar() {... } // error, A.bar is final
int foo() {... } // ok, A.foo is final private, but not virtual
int abc() {... } // ok, A.abc is not virtual, B.abc is virtual

}

120 2.14. Functions

void test(A a)
{

a.def(); // calls B.def
a.foo(); // calls A.foo
a.bar(); // calls A.bar
a.abc(); // calls A.abc

}

void func()
{ B b = new B();

test(b);
}

Covariant return types are supported, which means that the overriding func-
tion in a derived class can return a type that is derived from the type returned
by the overridden function:

class A { }
class B : A { }

class Foo
{

A test() { return null; }
}

class Bar : Foo
{

B test() { return null; } // overrides and is covariant with Foo.test()
}

Inline Functions

There is no inline keyword. The compiler makes the decision whether to inline a
function or not, analogously to the register keyword no longer being relevant to
a compiler’s decisions on enregistering variables. (There is no register keyword
either.)

Function Overloading

In C++, there are many complex levels of function overloading, with some de-
fined as "better" matches than others. If the code designer takes advantage of
the more subtle behaviors of overload function selection, the code can become
difficult to maintain. Not only will it take a C++ expert to understand why one
function is selected over another, but different C++ compilers can implement
this tricky feature differently, producing subtly disastrous results.

In D, function overloading is simple. It matches exactly, it matches with im-
plicit conversions, or it does not match. If there is more than one match, it is an
error.

Chapter 2. The Language 121

Functions defined with non-D linkage cannot be overloaded.

Function Parameters

Parameters are in, out, or inout. in is the default; out and inout work like stor-
age classes. For example:

int foo(int x, out int y, inout int z, int q);

x is in, y is out, z is inout, and q is in.
out is rare enough, and inout even rarer, to attach the keywords to them

and leave in as the default. The reasons to have them are:

• The function declaration makes it clear what the inputs and outputs to the
function are.

• It eliminates the need for IDL as a separate language.

• It provides more information to the compiler, enabling more error check-
ing and possibly better code generation.

• It (perhaps?) eliminates the need for reference (&) declarations.

out parameters are set to the default initializer for the type of it. For example:

void foo(out int bar)
{
}

int bar = 3;
foo(bar);
// bar is now 0

Local Variables

It is an error to use a local variable without first assigning it a value. The imple-
mentation may not always be able to detect these cases. Other language com-
pilers sometimes issue a warning for this, but since it is always a bug, it should
be an error.

It is an error to declare a local variable that is never referred to. Dead vari-
ables, like anachronistic dead code, is just a source of confusion for maintenance
programmers.

It is an error to declare a local variable that hides another local variable in the
same function:

122 2.14. Functions

void func(int x)
{ int x; error, hides previous definition of x

double y;
...
{ char y; error, hides previous definition of y

int z;
}
{ wchar z; legal, previous z is out of scope
}

}

While this might look unreasonable, in practice whenever this is done it ei-
ther is a bug or at least looks like a bug.

It is an error to return the address of or a reference to a local variable.
It is an error to have a local variable and a label with the same name.

2.14.1. Nested Functions

Functions may be nested within other functions:

int bar(int a)
{

int foo(int b)
{

int abc() { return 1; }

return b + abc();
}
return foo(a);

}

void test()
{

int i = bar(3); // i is assigned 4
}

Nested functions can only be accessed by the most nested lexically enclos-
ing function, or by another nested function at the same nesting depth:

int bar(int a)
{

int foo(int b) { return b + 1; }
int abc(int b) { return foo(b); } // ok
return foo(a);

}

void test()
{

Chapter 2. The Language 123

int i = bar(3); // ok
int j = bar.foo(3); // error, bar.foo not visible

}

Nested functions have access to the variables and other symbols defined by
the lexically enclosing function. This access includes both the ability to read and
write them.

int bar(int a)
{ int c = 3;

int foo(int b)
{

b += c; // 4 is added to b
c++; // bar.c is now 5
return b + c; // 12 is returned

}
c = 4;
int i = foo(a); // i is set to 12
return i + c; // returns 17

}

void test()
{

int i = bar(3); // i is assigned 17
}

This access can span multiple nesting levels:

int bar(int a)
{ int c = 3;

int foo(int b)
{

int abc()
{

return c; // access bar.c
}
return b + c + abc();

}
return foo(3);

}

Static nested functions cannot access any stack variables of any lexically en-
closing function, but can access static variables. This is analogous to how static
member functions behave.

int bar(int a)
{ int c;

124 2.14. Functions

static int d;

static int foo(int b)
{

b = d; // ok
b = c; // error, foo() cannot access frame of bar()
return b + 1;

}
return foo(a);

}

Functions can be nested within member functions:

struct Foo
{ int a;

int bar()
{ int c;

int foo()
{

return c + a;
}

}
}

Member functions of nested classes and structs do not have access to the
stack variables of the enclosing function, but do have access to the other sym-
bols:

void test()
{ int j;

static int s;

struct Foo
{ int a;

int bar()
{ int c = s; // ok, s is static

int d = j; // error, no access to frame of test()

int foo()
{

int e = s; // ok, s is static
int f = j; // error, no access to frame of test()
return c + a; // ok, frame of bar() is accessible,

// so are members of Foo accessible via
// the ’this’ pointer to Foo.bar()

}
}

Chapter 2. The Language 125

}
}

Nested functions always have the D function linkage type.
Unlike module level declarations, declarations within function scope are pro-

cessed in order. This means that two nested functions cannot mutually call each
other:

void test()
{

void foo() { bar(); } // error, bar not defined
void bar() { foo(); } // ok

}

The solution is to use a delegate:

void test()
{

void delegate() fp;
void foo() { fp(); }
void bar() { foo(); }
fp = &bar;

}

Future directions: This restriction may be removed.

Delegates, Function Pointers, and Dynamic Closures

A function pointer can point to a static nested function:

int function() fp;

void test()
{ static int a = 7;

static int foo() { return a + 3; }

fp = &foo;
}

void bar()
{

test();
int i = fp(); // i is set to 10

}

A delegate can be set to a non-static nested function:

126 2.14. Functions

int delegate() dg;

void test()
{ int a = 7;

int foo() { return a + 3; }

dg = &foo;
int i = dg(); // i is set to 10

}

The stack variables, however, are not valid once the function declaring them
has exited, in the same manner that pointers to stack variables are not valid
upon exit from a function:

int* bar()
{ int b;

test();
int i = dg(); // error, test.a no longer exists
return &b; // error, bar.b not valid after bar() exits

}

Delegates to non-static nested functions contain two pieces of data: the
pointer to the stack frame of the lexically enclosing function (called the frame
pointer) and the address of the function. This is analogous to struct/class non-
static member function delegates consisting of a this pointer and the address
of the member function. Both forms of delegates are interchangeable, and are
actually the same type:

struct Foo
{ int a = 7;

int bar() { return a; }
}

int foo(int delegate() dg)
{

return dg() + 1;
}

void test()
{

int x = 27;
int abc() { return x; }
Foo f;
int i;

i = foo(&abc); // i is set to 28
i = foo(&f.bar); // i is set to 8

}

Chapter 2. The Language 127

This combining of the environment and the function is called a dynamic clo-
sure.

Future directions: Function pointerss and delegates may merge into a com-
mon syntax and be interchangable with each other.

2.15.
Operator Overloading

Overloading is accomplished by interpreting specially named member functions
as being implementations of unary and binary operators. No additional syntax
is used.

2.15.1. Unary Operator Overloading

Overloadable Unary Operators

op opfunc
- opNeg

opCom
e++ opPostInc
e– opPostDec

Given a unary overloadable operator op and its corresponding class or struct
member function name opfunc , the syntax:

op a

where a is a class or struct object reference, is interpreted as if it was written
as:

a.opfunc ()

Overloading ++e and –e

Since ++e is defined to be semantically equivalent to (e += 1), the expression
++e is rewritten as (e += 1), and then checking for operator overloading is done.
The situation is analogous for –e.

Examples

1. class A { int opNeg (); }
A a;
-a; // equivalent to a.opNeg();

128 2.15. Operator Overloading

2. class A { int opNeg (int i); }
A a;
-a; // equivalent to a.opNeg(), which is an error

2.15.2. Binary Operator Overloading

Overloadable Binary Operators

op commutative? opfunc opfunc_r
+ yes opAdd -
- no opSub opSub_r

yes opMul -
/ no opDiv opDiv_r
ampr yes opAnd -
| yes opOr -
dasz yes opXor -
« no opShl opShl_r
» no opShr opShr_r
»> no opUShr opUShr_r

no opCat opCat_r
== yes opEquals -
!= yes opEquals -
< yes opCmp -
<= yes opCmp -
> yes opCmp -
>= yes opCmp -
+= no opAddAssign -
-= no opSubAssign -
= no opMulAssign -
/= no opDivAssign -
ampr= no opAndAssign -
|= no opOrAssign -
dasz= no opXorAssign -
«= no opShlAssign -
»= no opShrAssign -
»>= no opUShrAssign -
= no opCatAssign -

Given a binary overloadable operator op and its corresponding class or struct
member function name opfunc and opfunc_r, the syntax:

a op b

is interpreted as if it was written as:

Chapter 2. The Language 129

a.opfunc(b)

or:

b.opfunc_r(a)

The following sequence of rules is applied, in order, to determine which form
is used:

1. If a is a struct or class object reference that contains a member named
opfunc, the expression is rewritten as:

a.opfunc(b)

2. If b is a struct or class object reference that contains a member named op-
func_r and the operator op is not commutative, the expression is rewritten
as:

b.opfunc_r(a)

3. If b is a struct or class object reference that contains a member named
opfunc and the operator op is commutative, the expression is rewritten as:

b.opfunc(a)

4. If a or b is a struct or class object reference, it is an error.

Examples

1. class A { int opAdd (int i); }
A a;
a + 1; // equivalent to a.opAdd(1)

2. 1 + a; // equivalent to a.opAdd(1)

3. class B { int opDiv_r (int i); }
B b;
1 / b; // equivalent to b.opDiv_r(1)

130 2.15. Operator Overloading

Overloading == and !=

Both operators use the opEquals () function. The expression (a == b) is rewrit-
ten as a.opEquals (b), and (a != b) is rewritten as !a.opEquals (b).

The member function opEquals () is defined as part of Object as:

int opEquals (Object o);

so that every class object has an opEquals ().
If a struct has no opEquals () function declared for it, a bit compare of the

contents of the two structs is done to determine equality or inequality.

Overloading <, <=, > and >=

These comparison operators all use the opCmp () function. The expression (a
op b) is rewritten as (a.opCmp (b) op 0). The commutative operation is
rewritten as (0 op b.opCmp (a))

The member function opCmp () is defined as part of Object as:

int opCmp (Object o);

so that every class object has a opCmp ().
If a struct has no opCmp () function declared for it, attempting to compare

two structs is an error.
Note: Comparing a reference to a class object against null should be done

as:

if (a === null)

and not as:

if (a == null)

The latter is converted to:

if (a.opCmp (null))

which will fail if opCmp () is a virtual function.

Chapter 2. The Language 131

Rationale The reason for having both opEquals () and opCmp () is that:

• Testing for equality can sometimes be a much more efficient operation
than testing for less or greater than.

• For some objects, testing for less or greater makes no sense. For these,
override opCmp () with:

class A
{

int opCmp (Object o)
{

assert(0); // comparison makes no sense
return 0;

}
}

2.15.3. Function Call Operator Overloading f ()

The function call operator, (), can be overloaded by declaring a function named
opCall :

struct F
{

int opCall ();
int opCall (int x, int y, int z);

}

void test()
{ F f;

int i;

i = f() ; // same as i = f.opCall();
i = f(3,4,5) ; // same as i = a.opCall(3,4,5);

}

In this way a struct or class object can behave as if it were a function.

2.15.4. Array Operator Overloading

Overloading Indexing a[i]

The array index operator, [], can be overloaded by declaring a function named
opIndex with one or two parameters. The method with one parameter is used
as the rvalue, the method with two parameters is the lvalue:

132 2.16. Templates

struct A
{

int opIndex (int i);
int opIndex (int i, int value);

}

void test()
{ A a;

int i;

i = a[5] ; // same as i = a.opIndex(5);
a[i] = 7; // same as a.opIndex(i,7);

}

In this way a struct or class object can behave as if it were an array.
Note: Array index overloading currently does not work for the lvalue of an

op=, ++, or – operator.

Overloading Slicing a[] and a[i.. j]

Overloading the slicing operator means overloading expressions like a[] and
a[i.. j].

class A
{

int opSlice (); // overloads a[]
int opSlice (int x, int y); // overloads a[i.. j]

}

void test()
{ A a = new A();

int i;

i = a[] ; // same as i = a.opSlice();
i = a[3..4] ; // same as i = a.opSlice(3,4);

}

2.15.5. Future Directions

The operators., & &, ||, ?:, and a few others will likely never be overloadable. The
names of the overloaded operators may change.

2.16.
Templates

Templates are D’s approach to generic programming. Templates are defined
with a TemplateDeclaration:

Chapter 2. The Language 133

TemplateDeclaration :
template TemplateIdentifier (TemplateParameterList)

{ DeclDefs }

TemplateIdentifier :
Identifier

TemplateParameterList
TemplateParameter
TemplateParameter , TemplateParameterList

TemplateParameter :
TypeParameter
ValueParameter
AliasParameter

TypeParameter :
Identifier
Identifier : Type

ValueParameter :
Declaration
Declaration : AssignExpression

AliasParameter :
alias Identifier

The body of the TemplateDeclaration must be syntactically correct even if
never instantiated. Semantic analysis is not done until instantiated. A template
forms its own scope, and the template body can contain classes, structs, types,
enums, variables, functions, and other templates.

Template parameters can be types, values, or symbols. Types can be any
type. Value parameters must be of an integral type, and specializations for them
must resolve to an integral constant. Symbols can be any non-local symbol.

2.16.1. Template Instantiation

Templates are instantiated with:

TemplateInstance :
TemplateIdentifer !(TemplateArgumentList)

TemplateArgumentList :
TemplateArgument
TemplateArgument , TemplateArgumentList

TemplateArgument :
Type
AssignExpression
Symbol

134 2.16. Templates

Once instantiated, the declarations inside the template, called the template
members, are in the scope of the TemplateInstance:

template TFoo(T) { alias T* t; }
...
TFoo!(int).t x; // declare x to be of type int*

A template instantiation can be aliased:

template TFoo(T) { alias T* t; }
alias TFoo!(int) abc;
abc.t x; // declare x to be of type int*

Multiple instantiations of a TemplateDeclaration with the same TemplatePa-
rameterList all will refer to the same instantiation. For example:

template TFoo(T) { T f; }
alias TFoo(int) a;
alias TFoo(int) b;

...
a.f = 3;
assert(b.f == 3); // a and b refer to the same instance of TFoo

This is true even if the TemplateInstances are done in different modules.
If multiple templates with the same TemplateIdentifier are declared, they are

distinct if they have a different number of arguments or are differently special-
ized.

For example, a simple generic copy template would be:

template TCopy(T)
{

void copy(out T to, T from)
{

to = from;
}

}

To use the template, it must first be instantiated with a specific type:

int i;
TCopy!(int).copy(i, 3);

Chapter 2. The Language 135

2.16.2. Instantiation Scope

TemplateInstantances are always performed in the scope of where the Templat-
eDeclaration is declared, with the addition of the template parameters being
declared as aliases for their deduced types.

For example:

-------- module a ---------
template TFoo(T) { void bar() { func(); } }

-------- module b ---------
import a;

void func() { }
alias TFoo!(int) f; // error: func not defined in module a

and:

-------- module a ---------
template TFoo(T) { void bar() { func(1); } }
void func(double d) { }

-------- module b ---------
import a;

void func(int i) { }
alias TFoo!(int) f;

...
f.bar(); // will call a.func(double)

2.16.3. Argument Deduction

The types of template parameters are deduced for a particular template instan-
tiation by comparing the template argument with the corresponding template
parameter.

For each template parameter, the following rules are applied in order until a
type is deduced for each parameter:

1. If there is no type specialization for the parameter, the type of the param-
eter is set to the template argument.

2. If the type specialization is dependent on a type parameter, the type of
that parameter is set to be the corresponding part of the type argument.

3. If after all the type arguments are examined there are any type parameters
left with no type assigned, they are assigned types corresponding to the
template argument in the same position in the TemplateArgumentList.

136 2.16. Templates

4. If applying the above rules does not result in exactly one type for each
template parameter, then it is an error.

For example:

template TFoo(T) { }
alias TFoo!(int) Foo1; // (1) T is deduced to be int
alias TFoo!(char*) Foo2; // (1) T is deduced to be char*

template TFoo(T : T*) { }
alias TFoo!(char*) Foo3; // (2) T is deduced to be char

template TBar(D, U : D[]) { }
alias TBar!(int, int[]) Bar1; // (2) D is deduced to be int, U is int[]
alias TBar!(char, int[]) Bar2; // (4) error, D is both char and int

template TBar(D : E*, E) { }
alias TBar!(int*, int) Bar3; // (1) E is int

// (3) D is int*

When considering matches, a class is considered to be a match for any super
classes or interfaces:

class A { }
class B : A { }

template TFoo(T : A) { }
alias TFoo!(B) Foo4; // (3) T is B

template TBar(T : U*, U : A) { }
alias TBar!(B*, B) Foo5; // (2) T is B*

// (3) U is B

2.16.4. Value Parameters

This example of template foo has a value parameter that is specialized for 10:

template foo(U : int, int T : 10)
{

U x = T;
}

void main()
{

assert(foo!(int, 10).x == 10);
}

Chapter 2. The Language 137

2.16.5. Specialization

Templates may be specialized for particular types of arguments by following the
template parameter identifier with a : and the specialized type. For example:

template TFoo(T) {... } // #1
template TFoo(T : T[]) {... } // #2
template TFoo(T : char) {... } // #3
template TFoo(T,U,V) {... } // #4

alias TFoo!(int) foo1; // instantiates #1
alias TFoo!(double[]) foo2; // instantiates #2 with T being double
alias TFoo!(char) foo3; // instantiates #3
alias TFoo!(char, int) fooe; // error, number of arguments mismatch
alias TFoo!(char, int, int) foo4; // instantiates #4

The template picked to instantiate is the one that is most specialized that fits
the types of the TemplateArgumentList. Determine which is more specialized is
done the same way as the C++ partial ordering rules. If the result is ambiguous,
it is an error.

2.16.6. Alias Parameters

Alias parameters enable templates to be parameterized with any type of D sym-
bol, including global names, type names, module names, template names, and
template instance names. Local names may not be used as alias parameters. It
is a superset of the uses of template template parameters in C++.

• Global names

int x;

template Foo(alias X)
{

static int* p = &X;
}

void test()
{

alias Foo!(x) bar;
*bar.p = 3; // set x to 3
int y;
alias Foo!(y) abc; // error, y is local name

}

• Type names

138 2.16. Templates

class Foo
{

static int p;
}

template Bar(alias T)
{

alias T.p q;
}

void test()
{

alias Bar!(Foo) bar;
bar.q = 3; // sets Foo.p to 3

}

• Module names

import std.string;

template Foo(alias X)
{

alias X.toString y;
}

void test()
{

alias Foo!(std.string) bar;
bar.y(3); // calls std.string.toString(3)

}

• Template names

int x;

template Foo(alias X)
{

static int* p = &X;
}

template Bar(alias T)
{

alias T!(x) abc;
}

void test()
{

alias Bar!(Foo) bar;
*bar.abc.p = 3; // sets x to 3

}

Chapter 2. The Language 139

• Template alias names

int x;

template Foo(alias X)
{

static int* p = &X;
}

template Bar(alias T)
{

alias T.p q;
}

void test()
{

alias Foo!(x) foo;
alias Bar!(foo) bar;
*bar.q = 3; // sets x to 3

}

2.16.7. Limitations

Templates cannot be used to add non-static members or functions to classes.
For example:

class Foo
{

template TBar(T)
{

T xx; // Error
int func(T) {... } // Error

static T yy; // Ok
static int func(T t, int y) {... } // Ok

}
}

Templates cannot be declared inside functions.

2.17.
Design by Contract

Contracts are a breakthrough technique to reduce the programming effort for
large projects. Contracts are the concept of preconditions, postconditions, er-
rors, and invariants. Contracts can be done in C++ without modification to the
language, but the result is clumsy and inconsistent.

Building contract support into the language makes for:

140 2.17. Design by Contract

1. a consistent look and feel for the contracts

2. tool support

3. it’s possible the compiler can generate better code using information gath-
ered from the contracts

4. easier management and enforcement of contracts

5. handling of contract inheritance

The idea of a contract is simple - it’s just an expression that must evaluate to true.
If it does not, the contract is broken, and by definition, the program has a bug
in it. Contracts form part of the specification for a program, moving it from the
documentation to the code itself. And as every programmer knows, documen-
tation tends to be incomplete, out of date, wrong, or non-existent. Moving the
contracts into the code makes them verifiable against the program.

2.17.1. Assert Contract

The most basic contract is the assert. An assert inserts acheckable expression
into the code, and that expression must evaluate to true:

assert(expression);

C programmers will find it familiar. Unlike C, however, an assert in func-
tion bodies works by throwing an AssertException, which can be caught and
handled. Catching the contract violation is useful when the code must deal with
errant uses by other code, when it must be failure proof, and as a useful tool for
debugging.

2.17.2. Pre and Post Contracts

The pre contracts specify the preconditions before a statement is executed. The
most typical use of this would be in validating the parameters to a function. The
post contracts validate the result of the statement. The most typical use of this
would be in validating the return value of a function and of any side effects it
has. The syntax is:

in
{

...contract preconditions...
}
out (result)
{

...contract postconditions...

Chapter 2. The Language 141

}
body
{

...code...
}

By definition, if a pre contract fails, then the body received bad parameters.
An InException is thrown. If a post contract fails, then there is a bug in the body.
An OutException is thrown.

Either the in or the out clause can be omitted. If the out clause is for a
function body, the variable result is declared and assigned the return value of
the function. For example, let’s implement a square root function:

long square_root(long x)
in
{

assert(x >= 0);
}
out (result)
{

assert((result * result) == x);
}
body
{

return math.sqrt(x);
}

The assert’s in the in and out bodies are called <dfn>contracts</dfn>. Any
other D statement or expression is allowed in the bodies, but it is important to
ensure that the code has no side effects, and that the release version of the code
will not depend on any effects of the code. For a release build of the code, the
in and out code is not inserted.

If the function returns a void, there is no result, and so there can be no result
declaration in the out clause. In that case, use:

void func()
out
{

...contracts...
}
body
{

...
}

In an out statement, result is initialized and set to the return value of the
function.

142 2.18. Debug, Version, and Static Assert

The compiler can be adjusted to verify that every in and inout parameter is
referenced in the in { }, and every out and inout parameter is referenced in
the out { }.

The in-out statement can also be used inside a function, for example, it can
be used to check the results of a loop:

in
{

assert(j == 0);
}
out
{

assert(j == 10);
}
body
{

for (i = 0; i < 10; i++)
j++;

}

This is not implemented at this time.

2.17.3. In, Out and Inheritance

If a function in a derived class overrides a function in its super class, then only
one of the in contracts of the base functions must be satisified Overriding func-
tions then becomes a process of loosening the in contracts.

Conversely, all of the out contracts needs to be satisified, so overriding func-
tions becomes a processes of tightening the out contracts.

2.17.4. Class Invariants

Class invariants are used to specify characteristics of a class that always must be
true (except while executing a member function). They are described in Classes.

2.17.5. References

ContractsReading List
AddingContracts to Java

2.18.
Debug, Version, and Static Assert

D supports building multiple versions and various debug builds from the same
source code using the features:

Chapter 2. The Language 143

DebugSpecification
DebugAttribute
DebugStatement

VersionSpecification
VersionAttribute
VersionStatement

StaticAssert

2.18.1. Predefined Versions

Several environmental version identifiers and identifier name spaces are pre-
defined to encourage consistent usage. Version identifiers do not conflict with
other identifiers in the code, they are in a separate name space.

• DigitalMars Digital Mars is the compiler vendor

• X86 Intel and AMD 32 bit processors

• AMD64 AMD 64 bit processors

• Windows Microsoft Windows systems

• Win32 Microsoft 32 bit Windows systems

• Win64 Microsoft 64 bit Windows systems

• linux All linux systems

• LittleEndian Byte order, least significant first

• BigEndian Byte order, most significant first

• D_InlineAsm Inline assembler is implemented

• none Never defined; used to just disable a section of code

Others will be added as they make sense and new implementations appear.
It is inevitable that the D language will evolve over time. Therefore, the ver-

sion identifier namespace beginning with "D_" is reserved for identifiers indicat-
ing D language specification or new feature conformance.

Compiler vendor specific versions can be predefined if the trademarked ven-
dor identifier prefixes it, as in:

version(DigitalMars_funky_extension)
{

...
}

144 2.18. Debug, Version, and Static Assert

It is important to use the right version identifier for the right purpose. For
example, use the vendor identifier when using a vendor specific feature. Use
the operating system identifier when using an operating system specific feature,
etc.

2.18.2. Specification

DebugSpecification
debug = Identifier ;
debug = Integer ;

VersionSpecification
version = Identifier ;
version = Integer ;

Version specifications do not declare any symbols, but instead set a version
in the same manner that the -version does on the command line. The version
specification is used for conditional compilation with version attributes and ver-
sion statements.

The version specification makes it straightforward to group a set of features
under one major version, for example:

version (ProfessionalEdition)
{

version = FeatureA;
version = FeatureB;
version = FeatureC;

}
version (HomeEdition)
{

version = FeatureA;
}

...
version (FeatureB)
{

... implement Feature B...
}

2.18.3. Debug Statement

Two versions of programs are commonly built, a release build and a debug build.
The debug build commonly includes extra error checking code, test harnesses,
pretty-printing code, etc. The debug statement conditionally compiles in its
statement body. It is D’s way of what in C is done with #ifdef DEBUG / #endif
pairs.

Chapter 2. The Language 145

DebugStatement :
debug Statement
debug (Integer) Statement
debug (Identifier) Statement

Debug statements are compiled in when the -debug switch is thrown on the
compiler.

debug(Integer) statements are compiled in when the debug level n set by
the -debug(n) switch is <= Integer.

debug(Identifier) statements are compiled in when the debug identifier set
by the -debug(identifer) matches Identifier.

If Statement is a block statement, it does not introduce a new scope. For
example:

int k;
debug
{ int i;

int k; // error, k already defined

i = 3;
}
x = i; // uses the i declared above

There is no else clause for a debug statement, as debug statements should
add code, not subtract code.

2.18.4. Version Statement

It is commonplace to conveniently support multiple versions of a module with
a single source file. While the D way is to isolate all versioning into separate
modules, that can get burdensome if it’s just simple line change, or if the entire
program would otherwise fit into one module.

VersionStatement :
VersionPredicate Statement
VersionPredicate Statement else Statement

VersionPredicate
version (Integer)
version (Identifier)

The version statement conditionally compiles in its statement body based
on the version specified by the Integer of Identifier. Both forms are set by the
-version switch to the compiler. If Statement is a block statement, it does not
introduce a new scope. For example:

146 2.18. Debug, Version, and Static Assert

int k;
version (Demo) // compile in this code block for the demo version
{ int i;

int k; // error, k already defined

i = 3;
}
x = i; // uses the i declared above

The version statement works together with the version attribute for declara-
tions.

Version statements can nest.
The optional else clause gets conditionally compiled in if the version predi-

cate is false:

version (X86)
{

... // implement custom inline assembler version
}
else
{

... // use default, but slow, version
}

While the debug and version statements superficially behave the same, they
are intended for very different purposes. Debug statements are for adding de-
bug code that is removed for the release version. Version statements are to aid
in portability and multiple release versions.

2.18.5. Debug Attribute

DebugAttribute :
debug
debug (Integer)
debug (Identifier)

Two versions of programs are commonly built, a release build and a de-
bug build. The debug build includes extra error checking code, test harnesses,
pretty-printing code, etc. The debug attribute conditionally compiles in code:

class Foo
{

int a, b;
debug:

int flag;
}

Chapter 2. The Language 147

Conditional Compilation means that if the code is not compiled in, it still must
be syntactically correct, but no semantic checking or processing is done on it.
No symbols are defined, no typechecking is done, no code is generated, no im-
ports are imported. Various different debug builds can be built with a parameter
to debug:

debug(n) { } // add in debug code if debug level is <= n
debug(identifier) { } // add in debug code if debug keyword is identifier

These are presumably set by the command line as -debug=n and -debug=identifier
.

2.18.6. Version Attribute

VersionAttribute :
version (Integer)
version (Identifier)

The version attribute is very similar to the debug attribute, and in many ways
is functionally interchangable with it. The purpose of it, however, is different.
While debug is for building debugging versions of a program, version is for using
the same source to build multiple release versions.

For instance, there may be a full version as opposed to a demo version:

class Foo
{

int a, b;

version(full)
{

int extrafunctionality()
{

...
return 1; // extra functionality is supported

}
}
else // demo
{

int extrafunctionality()
{

return 0; // extra functionality is not supported
}

}
}

Various different version builds can be built with a parameter to version:

148 2.19. Error Handling in D

version(n) { } // add in version code if version level is >= n
version(identifier) { } // add in version code if version keyword is identifier

These are presumably set by the command line as -version=n and -version=identifier .

2.18.7. Static Assert

StaticAssert :
static assert (Expression);

Expression is evaluated at compile time, and converted to a boolean value. If
the value is true, the static assert is ignored. If the value is false, an error diag-
nostic is issued and the compile fails.

Unlike AssertExpressions, StaticAsserts are always checked and evaluted by
the compiler unless they appear in a false debug or version conditional.

void foo()
{

if (0)
{

assert(0); // never trips
static assert(0); // always trips

}
version (BAR)
{

static assert(0); // does not trip unless BAR is defined
}

}

2.19.
Error Handling in D

All programs have to deal with errors. Errors are unexpected conditions that are
not part of the normal operation of a program. Examples of common errors are:

• Out of memory.

• Out of disk space.

• Invalid file name.

• Attempting to write to a read-only file.

• Attempting to read a non-existent file.

• Requesting a system service that is not supported.

Chapter 2. The Language 149

2.19.1. The Error Handling Problem

The traditional C way of detecting and reporting errors is not traditional, it is
ad-hoc and varies from function to function, including:

• Returning a NULL pointer.

• Returning a 0 value.

• Returning a non-zero error code.

• Requiring errno to be checked.

• Requiring that a function be called to check if the previous function failed.

To deal with these possible errors, tedious error handling code must be added
to each function call. If an error happened, code must be written to recover from
the error, and the error must be reported to the user in some user friendly fash-
ion. If an error cannot be handled locally, it must be explicitly propagated back
to its caller. The long list of errno values needs to be converted into appropriate
text to be displayed. Adding all the code to do this can consume a large part
of the time spent coding a project - and still, if a new errno value is added to
the runtime system, the old code can not properly display a meaningful error
message.

Good error handling code tends to clutter up what otherwise would be a
neat and clean looking implementation.

Even worse, good error handling code is itself error prone, tends to be the
least tested (and therefore buggy) part of the project, and is frequently simply
omitted. The end result is likely a "blue screen of death" as the program failed to
deal with some unanticipated error.

Quick and dirty programs are not worth writing tedious error handling code
for, and so such utilities tend to be like using a table saw with no blade guards.

What’s needed is an error handling philosophy and methodology that is:

• Standardized - consistent usage makes it more useful.

• Produces a reasonable result even if the programmer fails to check for er-
rors.

• Allows old code to be reused with new code without having to modify the
old code to be compatible with new error types.

• No errors get inadvertently ignored.

• Allows ’quick and dirty’ utilities to be written that still correctly handle
errors.

• Easy to make the error handling source code look good.

150 2.19. Error Handling in D

2.19.2. The D Error Handling Solution

Let’s first make some observations and assumptions about errors:

• Errors are not part of the normal flow of a program. Errors are exceptional,
unusual, and unexpected.

• Because errors are unusual, execution of error handling code is not per-
formance critical.

• The normal flow of program logic is performance critical.

• All errors must be dealt with in some way, either by code explicitly written
to handle them, or by some system default handling.

• The code that detects an error knows more about the error than the code
that must recover from the error.

The solution is to use exception handling to report errors. All errors are ob-
jects derived from abstract class Error. class Error has a pure virtual function
called toString() which produces a char[] with a human readable description of
the error.

If code detects an error like "out of memory," then an Error is thrown with a
message saying "Out of memory". The function call stack is unwound, looking
for a handler for the Error. Finally blocks are executed as the stack is unwound.
If an error handler is found, execution resumes there. If not, the default Error
handler is run, which displays the message and terminates the program.

How does this meet our criteria?

• Standardized - consistent usage makes it more useful. This is the D way,
and is used consistently in the D runtime library and examples.

• Produces a reasonable result even if the programmer fails to check for er-
rors. If no catch handlers are there for the errors, then the program grace-
fully exits through the default error handler with an appropriate message.

• Allows old code to be reused with new code without having to modify the
old code to be compatible with new error types. Old code can decide to
catch all errors, or only specific ones, propagating the rest upwards. In any
case, there is no more need to correlate error numbers with messages, the
correct message is always supplied.

• No errors get inadvertently ignored. Error exceptions get handled one
way or another. There is nothing like a NULL pointer return indicating an
error, followed by trying to use that NULL pointer.

Chapter 2. The Language 151

• Allows ’quick and dirty’ utilities to be written that still correctly handle er-
rors. Quick and dirty code need not write any error handling code at all,
and don’t need to check for errors. The errors will be caught, an appro-
priate message displayed, and the program gracefully shut down all by
default.

• Easy to make the error handling source code look good. The try/catch/finally
statements look a lot nicer than endless if (error) goto errorhandler; state-
ments.

How does this meet our assumptions about errors?

• Errors are not part of the normal flow of a program. Errors are exceptional,
unusual, and unexpected. D exception handling fits right in with that.

• Because errors are unusual, execution of error handling code is not per-
formance critical. Exception handling stack unwinding is a relatively slow
process.

• The normal flow of program logic is performance critical. Since the normal
flow code does not have to check every function call for error returns, it
can be realistically faster to use exception handling for the errors.

• All errors must be dealt with in some way, either by code explicitly written
to handle them, or by some system default handling. If there’s no handler
for a particular error, it is handled by the runtime library default handler. If
an error is ignored, it is because the programmer specifically added code
to ignore an error, which presumably means it was intentional.

• The code that detects an error knows more about the error than the code
that must recover from the error. There is no more need to translate er-
ror codes into human readable strings, the correct string is generated by
the error detection code, not the error recovery code. This also leads to
consistent error messages for the same error between applications.

2.20.
Garbage Collection

D is a fully garbage collected language. That means that it is never necessary to
free memory. Just allocate as needed, and the garbage collector will periodically
return all unused memory to the pool of available memory.

C and C++ programmers accustomed to explicitly managing memory allo-
cation and deallocation will likely be skeptical of the benefits and efficacy of
garbage collection. Experience both with new projects written with garbage
collection in mind, and converting existing projects to garbage collection shows
that:

152 2.20. Garbage Collection

• Garbage collected programs are faster. This is counterintuitive, but the
reasons are:

– Reference counting is a common solution to solve explicit memory
allocation problems. The code to implement the increment and decre-
ment operations whenever assignments are made is one source of
slowdown. Hiding it behind smart pointer classes doesn’t help the
speed. (Reference counting methods are not a general solution any-
way, as circular references never get deleted.)

– Destructors are used to deallocate resources acquired by an object.
For most classes, this resource is allocated memory. With garbage
collection, most destructors then become empty and can be dis-
carded entirely.

– All those destructors freeing memory can become significant when
objects are allocated on the stack. For each one, some mechanism
must be established so that if an exception happens, the destructors
all get called in each frame to release any memory they hold. If the
destructors become irrelevant, then there’s no need to set up special
stack frames to handle exceptions, and the code runs faster.

– All the code necessary to manage memory can add up to quite a bit.
The larger a program is, the less in the cache it is, the more paging it
does, and the slower it runs.

– Garbage collection kicks in only when memory gets tight. When
memory is not tight, the program runs at full speed and does not
spend any time freeing memory.

– Modern garbage collecters are far more advanced now than the older,
slower ones. Generational, copying collectors eliminate much of the
inefficiency of early mark and sweep algorithms.

– Modern garbage collectors do heap compaction. Heap compaction
tends to reduce the number of pages actively referenced by a pro-
gram, which means that memory accesses are more likely to be cache
hits and less swapping.

– Garbage collected programs do not suffer from gradual deteriora-
tion due to an accumulation of memory leaks.

• Garbage collectors reclaim unused memory, therefore they do not suffer
from "memory leaks" which can cause long running applications to grad-
ually consume more and more memory until they bring down the system.
GC’d programs have longer term stability.

• Garbage collected programs have fewer hard-to-find pointer bugs. This is
because there are no dangling references to free’d memory. There is no
code to explicitly manage memory, hence no bugs in such code.

Chapter 2. The Language 153

• Garbage collected programs are faster to develop and debug, because
there’s no need for developing, debugging, testing, or maintaining the
explicit deallocation code.

• Garbage collected programs can be significantly smaller, because there
is no code to manage deallocation, and there is no need for exception
handlers to deallocate memory.

Garbage collection is not a panacea. There are some downsides:

• It is not predictable when a collection gets run, so the program can arbi-
trarilly pause.

• The time it takes for a collection to run is not bounded. While in practice
it is very quick, this cannot be guaranteed.

• All threads other than the collector thread must be halted while the col-
lection is in progress.

• Garbage collectors can keep around some memory that an explicit deal-
locator would not. In practice, this is not much of an issue since explicit
deallocators usually have memory leaks causing them to eventually use
far more memory, and because explicit deallocators do not normally re-
turn deallocated memory to the operating system anyway, instead just
returning it to its own internal pool.

• Garbage collection should be implemented as a basic operating system
kernel service. But since they are not, garbage collecting programs must
carry around with them the garbage collection implementation. While
this can be a shared DLL, it is still there.

These constraints are addressed by techniques outlined in Memory Manage-
ment.

2.20.1. How Garbage Collection Works

To be written...

2.20.2. Interfacing Garbage Collected Objects With Foreign Code

The garbage collector looks for roots in its static data segment, and the stacks
and register contents of each thread. If the only root of an object is held outside
of this, then the collecter will miss it and free the memory.

To avoid this from happening,

• Maintain a root to the object in an area the collector does scan for roots.

• Reallocate the object using the foreign code’s storage allocator or using
the C runtime library’s malloc/free.

154 2.21. Memory Management

2.20.3. Pointers and the Garbage Collector

The garbage collector’s algorithms depend on pointers being pointers and not
pointers being not pointers. To that end, the following practices that are not
unusual in C should be carefully avoided in D:

• Do not hide pointers by xor’ing them with other values, like the xor’d
pointer linked list trick used in C. Do not use the xor trick to swap two
pointer values.

• Do not store pointers into int variables using casts and other tricks. The
garbage collector does not scan non-pointer types for roots.

• Do not take advantage of alignment of pointers to store bit flags in the
low order bits, do not store bit flags in the high order bits.

• Do not store integer values into pointers.

• Do not store magic values into pointers, other than null.

• If you must share the same storage location between pointers and non-
pointer types, use a union to do it so the garbage collector knows about
it.

In fact, avoid using pointers at all as much as possible. D provides features
rendering most explicit pointer uses obsolete, such as reference objects, dy-
namic arrays, and garbage collection. Pointers are provided in order to interface
successfully with C API’s and for some wizard level work.

2.20.4. Working with the Garbage Collector

Garbage collection doesn’t solve every memory deallocation problem. For ex-
ample, if a root to a large data structure is kept, the garbage collector cannot
reclaim it, even if it is never referred to again. To eliminate this problem, it is
good practice to set a reference or pointer to an object to null when no longer
needed.

This advice applies only to static references or references embedded inside
other objects. There is not much point for such stored on the stack to be nulled,
since the collector doesn’t scan for roots past the top of the stack, and because
new stack frames are initialized anyway.

2.21.
Memory Management

Any non-trivial program needs to allocate and free memory. Memory manage-
ment techniques become more and more important as programs increase in

Chapter 2. The Language 155

complexity, size, and performance. D offers many options for managing mem-
ory.

The three primary methods for allocating memory in D are:

1. Static data, allocated in the default data segment.

2. Stack data, allocated on the CPU program stack.

3. Garbage collected data, allocated dynamically on the garbage collection
heap.

This chapter describes techniques for using them, as well as some advanced
alternatives:

• Strings (and Array) Copy-on-Write

• Real Time

• Smooth Operation

• Free Lists

• Reference Counting

• Explicit Class Instance Allocation

• Mark/Release

• RAII (Resource Acquisition Is Initialization)

• Allocating Class Instances On The Stack

2.21.1. Strings (and Array) Copy-on-Write

Consider the case of passing an array to a function, possibly modifying the con-
tents of the array, and returning the modified array. Since arrays are passed by
reference, not by value, a crucial issue is who owns the contents of the array? For
example, a function to convert an array of characters to upper case:

char[] toupper(char[] s)
{

int i;

for (i = 0; i < s.length; i++)
{

char c = s[i];
if (’a’ <= c & & c <= ’z’)

s[i] = c - (cast(char)’a’ - ’A’);
}
return s;

}

156 2.21. Memory Management

Note that the caller’s version of s[] is also modified. This may be not at all
what was intended, or worse, s[] may be a slice into a read-only section of mem-
ory.

If a copy of s[] was always made by toupper(), then that will unnecessarilly
consume time and memory for strings that are already all upper case.

The solution is to implement copy-on-write, which means that a copy is
made only if the string needs to be modified. Some string processing languages
do do this as the default behavior, but there is a huge cost to it. The string
"abcdeF" will wind up being copied 5 times by the function. To get the maxi-
mum efficiency using the protocol, it’ll have to be done explicitly in the code.
Here’s toupper() rewritten to implement copy-on-write in an efficient manner:

char[] toupper(char[] s)
{

int changed;
int i;

changed = 0;
for (i = 0; i < s.length; i++)
{

char c = s[i];
if (’a’ <= c & & c <= ’z’)
{

if (!changed)
{ char[] r = new char[s.length];

r[] = s;
s = r;
changed = 1;

}
s[i] = c - (cast(char)’a’ - ’A’);

}
}
return s;

}

Copy-on-write is the protocol implemented by array processing functions in
the D Phobos runtime library.

2.21.2. Real Time

Real time programming means that a program must be able to guarantee a max-
imum latency, or time to complete an operation. With most memory allocation
schemes, including malloc/free and garbage collection, the latency is theoreti-
cally not bound. The most reliable way to guarantee latency is to preallocate all
data that will be needed by the time critical portion. If no calls to allocate mem-
ory are done, the gc will not run and so will not cause the maximum latency to
be exceeded.

Chapter 2. The Language 157

2.21.3. Smooth Operation

Related to real time programming is the need for a program to operate smoothly,
without arbitrary pauses while the garbage collector stops everything to run a
collection. An example of such a program would be an interactive shooter type
game. Having the game play pause erratically, while not fatal to the program,
can be annoying to the user. There are several techniques to eliminate or miti-
gate the effect:

• Preallocate all data needed before the part of the code that needs to be
smooth is run.

• Manually run a gc collection cycle at points in program execution where
it is already paused. An example of such a place would be where the pro-
gram has just displayed a prompt for user input and the user has not re-
sponded yet. This reduces the odds that a collection cycle will be needed
during the smooth code.

• Call gc.disable() before the smooth code is run, and gc.enable() afterwards.
This will cause the gc to favor allocating more memory instead of running
a collection pass.

2.21.4. Free Lists

Free lists are a great way to accelerate access to a frequently allocated and dis-
carded type. The idea is simple - instead of deallocating an object when done
with it, put it on a free list. When allocating, pull one off the free list first.

class Foo
{

static Foo freelist; // start of free list

static Foo allocate()
{ Foo f;

if (freelist)
{ f = freelist;

freelist = f.next;
}
else

f = new Foo();
return f;

}

static void deallocate(Foo f)
{

f.next = freelist;
freelist = f;

158 2.21. Memory Management

}

Foo next; // for use by FooFreeList
...

}

void test()
{

Foo f = Foo.allocate();
...
Foo.deallocate(f);

}

Such free list approaches can be very high performance.

• If used by multiple threads, the allocate() and deallocate() functions need
to be synchronized.

• The Foo constructor is not re-run by allocate() when allocating from the
free list, so the allocator may need to reinitialize some of the members.

• It is not necessary to practice RIAA with this, since if any objects are not
passed to deallocate() when done, because of a thrown exception, they’ll
eventually get picked up by the gc anyway.

2.21.5. Reference Counting

The idea behind reference counting is to include a count field in the object. In-
crement it for each additional reference to it, and decrement it whenever a ref-
erence to it ceases. When the count hits 0, the object can be deleted.

D doesn’t provide any automated support for reference counting, it will have
to be done explicitly.

Win32 COM programming uses the members AddRef() and Release() to main-
tain the reference counts.

2.21.6. Explicit Class Instance Allocation

D provides a means of creating custom allocators and deallocators for class in-
stances. Normally, these would be allocated on the garbage collected heap, and
deallocated when the collector decides to run. For specialized purposes, this
can be handled by creating NewDeclarations and DeleteDeclarations. For exam-
ple, to allocate using the C runtime library’s malloc and free :

import std.c.stdlib;
import std.outofmemory;
import std.gc;

Chapter 2. The Language 159

class Foo
{

new(uint sz)
{

void* p;

p = std.c.stdlib.malloc(sz);
if (!p)

throw new OutOfMemory();
gc.addRange(p, p + sz);
return p;

}

delete(void* p)
{

if (p)
{ gc.removeRange(p);

std.c.stdlib.free(p);
}

}
}

The critical features of new() are:

• new() does not have a return type specified, but it is defined to be void*.
new() must return a void*.

• If new() cannot allocate memory, it must not return null, but must throw
an exception.

• The pointer returned from new() must be to memory aligned to the de-
fault alignment. This is 8 on win32 systems.

• The size parameter is needed in case the allocator is called from a class
derived from Foo and is a larger size than Foo.

• A null is not returned if storage cannot be allocated. Instead, an exception
is thrown. Which exception gets thrown is up to the programmer, in this
case, OutOfMemory() is.

• When scanning memory for root pointers into the garbage collected heap,
the static data segment and the stack are scanned automatically. The C
heap is not. Therefore, if Foo or any class derived from Foo using the allo-
cator contains any references to data allocated by the garbage collector,
the gc needs to be notified. This is done with the gc.addRange() method.

• No initialization of the memory is necessary, as code is automatically in-
serted after the call to new() to set the class instance members to their
defaults and then the constructor (if any) is run.

160 2.21. Memory Management

The critical features of delete() are:

• The destructor (if any) has already been called on the argument p, so the
data it points to should be assumed to be garbage.

• The pointer p may be null.

• If the gc was notified with gc.addRange(), a corresponding call to gc.removeRange()
must happen in the deallocator.

• If there is a delete(), there should be a corresponding new().

If memory is allocated using class specific allocators and deallocators, care-
ful coding practices must be followed to avoid memory leaks and dangling ref-
erences. In the presence of exceptions, it is particularly important to practice
RAII to prevent memory leaks.

2.21.7. Mark/Release

Mark/Release is equivalent to a stack method of allocating and freeing memory.
A ’stack’ is created in memory. Objects are allocated by simply moving a pointer
down the stack. Various points are ’marked’, and then whole sections of memory
are released simply by resetting the stack pointer back to a marked point.

import std.c.stdlib;
import std.outofmemory;

class Foo
{

static void[] buffer;
static int bufindex;
static const int bufsize = 100;

static this()
{ void *p;

p = malloc(bufsize);
if (!p)

throw new OutOfMemory;
gc.addRange(p, p + bufsize);
buffer = p[0.. bufsize];

}

static ˜this()
{

if (buffer.length)
{

gc.removeRange(buffer);
free(buffer);
buffer = null;

Chapter 2. The Language 161

}
}

new(uint sz)
{ void *p;

p = &buffer[bufindex];
bufindex += sz;
if (bufindex > buffer.length)

throw new OutOfMemory;
return p;

}

delete(void* p)
{

assert(0);
}

static int mark()
{

return bufindex;
}

static void release(int i)
{

bufindex = i;
}

}

void test()
{

int m = Foo.mark();
Foo f1 = new Foo; // allocate
Foo f2 = new Foo; // allocate

...
Foo.release(m); // deallocate f1 and f2

}

• The allocation of buffer[] itself is added as a region to the gc, so there is no
need for a separate call inside Foo.new() to do it.

2.21.8. RAII (Resource Acquisition Is Initialization)

RAII techniques can be useful in avoiding memory leaks when using explicit al-
locators and deallocators. Adding the auto attribute to such classes can help.

2.21.9. Allocating Class Instances On The Stack

Allocating class instances on the stack is useful for temporary objects that are to
be automatically deallocated when the function is exited. No special handling is

162 2.22. Floating Point

needed to account for function termination via stack unwinding from an excep-
tion. To work, they must not have destructors.

import std.c.stdlib;

class Foo
{

new(uint sz, void *p)
{

return p;
}

delete(void* p)
{

assert(0);
}

}

void test()
{

Foo f = new(std.c.stdlib.alloca(Foo.classinfo.init.length)) Foo;
...

}

• There is no need to check for a failure of alloca() and throw an exception,
since by definition alloca() will generate a stack overflow exception if it
overflows.

• There is no need for a call to gc.addRange() or gc.removeRange() since the
gc automatically scans the stack anyway.

• The dummy delete() function is to ensure that no attempts are made to
delete a stack based object.

2.22.
Floating Point

Floating Point Intermediate Values

On many computers, greater precision operations do not take any longer than
lesser precision operations, so it makes numerical sense to use the greatest pre-
cision available for internal temporaries. The philosophy is not to dumb down
the language to the lowest common hardware denominator, but to enable the
exploitation of the best capabilities of target hardware.

For floating point operations and expression intermediate values, a greater
precision can be used than the type of the expression. Only the minimum preci-
sion is set by the types of the operands, not the maximum. Implementation

Chapter 2. The Language 163

Note: On Intel x86 machines, for example, it is expected (but not required)
that the intermediate calculations be done to the full 80 bits of precision im-
plemented by the hardware.

It’s possible that, due to greater use of temporaries and common subexpres-
sions, optimized code may produce a more accurate answer than unoptimized
code.

Algorithms should be written to work based on the minimum precision of
the calculation. They should not degrade or fail if the actual precision is greater.
Float or double types, as opposed to the extended type, should only be used
for:

• reducing memory consumption for large arrays

• data and function argument compatibility with C

Complex and Imaginary types

In existing languages, there is an astonishing amount of effort expended in try-
ing to jam a complex type onto existing type definition facilities: templates,
structs, operator overloading, etc., and it all usually ultimately fails. It fails be-
cause the semantics of complex operations can be subtle, and it fails because
the compiler doesn’t know what the programmer is trying to do, and so cannot
optimize the semantic implementation.

This is all done to avoid adding a new type. Adding a new type means that
the compiler can make all the semantics of complex work "right". The program-
mer then can rely on a correct (or at least fixable) implementation of complex.

Coming with the baggage of a complex type is the need for an imaginary
type. An imaginary type eliminates some subtle semantic issues, and improves
performance by not having to perform extra operations on the implied 0 real
part.

Imaginary literals have an i suffix:

ireal j = 1.3i;

There is no particular complex literal syntax, just add a real and imaginary
type:

cdouble cd = 3.6 + 4i;
creal c = 4.5 + 2i;

Complex numbers have two properties:

.re get real part

.im get imaginary part as an imaginary

164 2.23. D x86 Inline Assembler

For example:

cd.re is 4.5 double
cd.im is 2i idouble
c.re is 4.5 real
c.im is 2i ireal

Rounding Control

IEEE 754 floating point arithmetic includes the ability to set 4 different rounding
modes. D adds syntax to access them: [blah, blah, blah] [NOTE: this is perhaps
better done with a standard library call]

Exception Flags

IEEE 754 floating point arithmetic can set several flags based on what happened
with a computation: [blah, blah, blah]. These flags can be set/reset with the syn-
tax: [blah, blah, blah] [NOTE: this is perhaps better done with a standard library
call]

Floating Point Comparisons

In addition to the usual < <= > >= == != comparison operators, D adds more
that are specific to floating point. These are [blah, blah, blah] and match the
semantics for the NCEG extensions to C.

[insert table here]

2.23.
D x86 Inline Assembler

D, being a systems programming language, provides an inline assembler. The
inline assembler is standardized for D implementations across the same CPU
family, for example, the Intel Pentium inline assembler for a Win32 D compiler
will be syntax compatible with the inline assembler for Linux running on an Intel
Pentium.

Differing D implementations, however, are free to innovate upon the mem-
ory model, function call/return conventions, argument passing conventions, etc.

This document describes the x86 implementation of the inline assembler.

AsmInstruction :
Identifier : AsmInstruction
align IntegerExpression
even

Chapter 2. The Language 165

naked
db Operands
ds Operands
di Operands
dl Operands
df Operands
dd Operands
de Operands
Opcode
Opcode Operands

Operands
Operand
Operand , Operands

2.23.1. Labels

Assembler instructions can be labeled just like other statements. They can be
the target of goto statements. For example:

void *pc;
asm
{

call L1 ;
L1: ;

pop EBX ;
mov pc[EBP],EBX ; // pc now points to code at L1

}

2.23.2. align IntegerExpression

Causes the assembler to emit NOP instructions to align the next assembler in-
struction on an IntegerExpression boundary. IntegerExpression must evaluate to
an integer that is a power of 2.

Aligning the start of a loop body can sometimes have a dramatic effect on
the execution speed.

2.23.3. even

Causes the assembler to emit NOP instructions to align the next assembler in-
struction on an even boundary.

166 2.23. D x86 Inline Assembler

2.23.4. naked

Causes the compiler to not generate the function prolog and epilog sequences.
This means such is the responsibility of inline assembly programmer, and is nor-
mally used when the entire function is to be written in assembler.

2.23.5. db, ds, di, dl, df, dd, de

These pseudo ops are for inserting raw data directly into the code. db is for
bytes, ds is for 16 bit words, di is for 32 bit words, dl is for 64 bit words, df is for
32 bit floats, dd is for 64 bit doubles, and de is for 80 bit extended reals. Each
can have multiple operands. If an operand is a string literal, it is as if there were
length operands, where length is the number of characters in the string. One
character is used per operand. For example:

asm
{

db 5,6,0x83; // insert bytes 0x05, 0x06, and 0x83 into code
ds 0x1234; // insert bytes 0x34, 0x12
di 0x1234; // insert bytes 0x34, 0x12, 0x00, 0x00
dl 0x1234; // insert bytes 0x34, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
df 1.234; // insert float 1.234
dd 1.234; // insert double 1.234
de 1.234; // insert extended 1.234
db "abc"; // insert bytes 0x61, 0x62, and 0x63
ds "abc"; // insert bytes 0x61, 0x00, 0x62, 0x00, 0x63, 0x00

}

2.23.6. Opcodes

A list of supported opcodes is at the end.
The following registers are supported. Register names are always in upper

case.

• AL, AH, AX, EAX

• BL, BH, BX, EBX

• CL, CH, CX, ECX

• DL, DH, DX, EDX

• BP, EBP

• SP, ESP

• DI, EDI

Chapter 2. The Language 167

• SI, ESI

• ES, CS, SS, DS, GS , FS

• CR0, CR2, CR3, CR4

• DR0, DR1, DR2, DR3, DR6, DR7

• TR3, TR4, TR5, TR6, TR7

• ST

• ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), ST(7)

• MM0, MM1, MM2, MM3 , MM4, MM5, MM6, MM7

Special Cases

• lock, rep, repe, repne , repnz, repz These prefix instructions do not ap-
pear in the same statement as the instructions they prefix; they appear in
their own statement. For example:

asm
{

rep ;
movsb ;

}

• pause This opcode is not supported by the assembler, instead use

{
rep ;
nop ;

}

which produces the same result.

• floating point ops Use the two operand form of the instruction format;

fdiv ST(1); // wrong
fmul ST; // wrong
fdiv ST,ST(1); // right
fmul ST,ST(0); // right

168 2.23. D x86 Inline Assembler

2.23.7. Operands

Operand :
AsmExp

AsmExp :
AsmLogOrExp
AsmLogOrExp ? AsmExp : AsmExp

AsmLogOrExp :
AsmLogAndExp
AsmLogAndExp || AsmLogAndExp

AsmLogAndExp :
AsmOrExp
AsmOrExp & & AsmOrExp

AsmOrExp :
AsmXorExp
AsmXorExp | AsmXorExp

AsmXorExp :
AsmAndExp
AsmAndExp ˆ AsmAndExp

AsmAndExp :
AsmEqualExp
AsmEqualExp & AsmEqualExp

AsmEqualExp :
AsmRelExp
AsmRelExp == AsmRelExp
AsmRelExp != AsmRelExp

AsmRelExp :
AsmShiftExp
AsmShiftExp < AsmShiftExp
AsmShiftExp <= AsmShiftExp
AsmShiftExp > AsmShiftExp
AsmShiftExp >= AsmShiftExp

AsmShiftExp :
AsmAddExp
AsmAddExp << AsmAddExp
AsmAddExp >> AsmAddExp
AsmAddExp >>> AsmAddExp

AsmAddExp :
AsmMulExp
AsmMulExp + AsmMulExp
AsmMulExp - AsmMulExp

AsmMulExp :

Chapter 2. The Language 169

AsmBrExp
AsmBrExp * AsmBrExp
AsmBrExp / AsmBrExp
AsmBrExp % AsmBrExp

AsmBrExp :
AsmUnaExp
AsmBrExp [AsmExp]

AsmUnaExp :
AsmTypePrefix AsmExp
offset AsmExp
seg AsmExp
+ AsmUnaExp
- AsmUnaExp
! AsmUnaExp
˜ AsmUnaExp
AsmPrimaryExp

AsmPrimaryExp
IntegerConstant
FloatConstant
__LOCAL_SIZE
$
Register
DotIdentifier

DotIdentifier
Identifier
Identifier . DotIdentifier

The operand syntax more or less follows the Intel CPU documentation con-
ventions. In particular, the convention is that for two operand instructions the
source is the right operand and the destination is the left operand. The syntax
differs from that of Intel’s in order to be compatible with the D language tok-
enizer and to simplify parsing.

Operand Types

AsmTypePrefix :
near ptr
far ptr
byte ptr
short ptr
int ptr
word ptr
dword ptr
float ptr
double ptr
extended ptr

170 2.23. D x86 Inline Assembler

In cases where the operand size is ambiguous, as in:

add [EAX],3 ;

it can be disambiguated by using an AsmTypePrefix:

add byte ptr [EAX],3 ;
add int ptr [EAX],7 ;

Struct/Union/Class Member Offsets

To access members of an aggregate, given a pointer to the aggregate is in a
register, use the qualified name of the member:

struct Foo { int a,b,c; }
int bar(Foo *f)
{

asm
{ mov EBX,f ;

mov EAX,Foo.b[EBX] ;
}

}

Special Symbols

• $ Represents the program counter of the start of the next instruction. So,

jmp $;

branches to the instruction following the jmp instruction.

• __LOCAL_SIZE This gets replaced by the number of local bytes in the local
stack frame. It is most handy when the naked is invoked and a custom
stack frame is programmed.

2.23.8. Opcodes Supported

aaa aad aam aas adc
add addpd addps addsd addss
and andnpd andnps andpd andps
arpl bound bsf bsr bswap
bt btc btr bts call
cbw cdq clc cld clflush

Chapter 2. The Language 171

cli clts cmc cmova cmovae
cmovb cmovbe cmovc cmove cmovg
cmovge cmovl cmovle cmovna cmovnae
cmovnb cmovnbe cmovnc cmovne cmovng
cmovnge cmovnl cmovnle cmovno cmovnp
cmovns cmovnz cmovo cmovp cmovpe
cmovpo cmovs cmovz cmp cmppd
cmpps cmps cmpsb cmpsd cmpss
cmpsw cmpxch8b cmpxchg comisd comiss
cpuid cvtdq2pd cvtdq2ps cvtpd2dq cvtpd2pi
cvtpd2ps cvtpi2pd cvtpi2ps cvtps2dq cvtps2pd
cvtps2pi cvtsd2si cvtsd2ss cvtsi2sd cvtsi2ss
cvtss2sd cvtss2si cvttpd2dq cvttpd2pi cvttps2dq
cvttps2pi cvttsd2si cvttss2si cwd cwde
da daa das db dd
de dec df di div
divpd divps divsd divss dl
dq ds dt dw emms
enter f2xm1 fabs fadd faddp
fbld fbstp fchs fclex fcmovb
fcmovbe fcmove fcmovnb fcmovnbe fcmovne
fcmovnu fcmovu fcom fcomi fcomip
fcomp fcompp fcos fdecstp fdiv
fdivp fdivr fdivrp ffree fiadd
ficom ficomp fidiv fidivr fild
fimul fincstp finit fist fistp
fisub fisubr fld fld1 fldcw
fldenv fldl2e fldl2t fldlg2 fldln2
fldpi fldz fmul fmulp fnclex
fninit fnop fnsave fnstcw fnstenv
fnstsw fpatan fprem fprem1 fptan
frndint frstor fsave fscale fsetpm
fsin fsincos fsqrt fst fstcw
fstenv fstp fstsw fsub fsubp
fsubr fsubrp ftst fucom fucomi
fucomip fucomp fucompp fwait fxam
fxch fxrstor fxsave fxtract fyl2x
fyl2xp1 hlt idiv imul in
inc ins insb insd insw
int into invd invlpg iret
iretd ja jae jb jbe
jc jcxz je jecxz jg
jge jl jle jmp jna
jnae jnb jnbe jnc jne

172 2.23. D x86 Inline Assembler

jng jnge jnl jnle jno
jnp jns jnz jo jp
jpe jpo js jz lahf
lar ldmxcsr lds lea leave
les lfence lfs lgdt lgs
lidt lldt lmsw lock lods
lodsb lodsd lodsw loop loope
loopne loopnz loopz lsl lss
ltr maskmovdqu maskmovq maxpd maxps
maxsd maxss mfence minpd minps
minsd minss mov movapd movaps
movd movdq2q movdqa movdqu movhlps
movhpd movhps movlhps movlpd movlps
movmskpd movmskps movntdq movnti movntpd
movntps movntq movq movq2dq movs
movsb movsd movss movsw movsx
movupd movups movzx mul mulpd
mulps mulsd mulss neg nop
not or orpd orps out
outs outsb outsd outsw packssdw
packsswb packuswb paddb paddd paddq
paddsb paddsw paddusb paddusw paddw
pand pandn pavgb pavgw pcmpeqb
pcmpeqd pcmpeqw pcmpgtb pcmpgtd pcmpgtw
pextrw pinsrw pmaddwd pmaxsw pmaxub
pminsw pminub pmovmskb pmulhuw pmulhw
pmullw pmuludq pop popa popad
popf popfd por prefetchnta prefetcht0
prefetcht1 prefetcht2 psadbw pshufd pshufhw
pshuflw pshufw pslld pslldq psllq
psllw psrad psraw psrld psrldq
psrlq psrlw psubb psubd psubq
psubsb psubsw psubusb psubusw psubw
punpckhbw punpckhdq punpckhqdq punpckhwd punpcklbw
punpckldq punpcklqdq punpcklwd push pusha
pushad pushf pushfd pxor rcl
rcpps rcpss rcr rdmsr rdpmc
rdtsc rep repe repne repnz
repz ret retf rol ror
rsm rsqrtps rsqrtss sahf sal
sar sbb scas scasb scasd
scasw seta setae setb setbe
setc sete setg setge setl
setle setna setnae setnb setnbe

Chapter 2. The Language 173

setnc setne setng setnge setnl
setnle setno setnp setns setnz
seto setp setpe setpo sets
setz sfence sgdt shl shld
shr shrd shufpd shufps sidt
sldt smsw sqrtpd sqrtps sqrtsd
sqrtss stc std sti stmxcsr
stos stosb stosd stosw str
sub subpd subps subsd subss
sysenter sysexit test ucomisd ucomiss
ud2 unpckhpd unpckhps unpcklpd unpcklps
verr verw wait wbinvd wrmsr
xadd xchg xlat xlatb xor
xorpd xorps

AMD Opcodes Supported

pavgusb pf2id pfacc pfadd pfcmpeq
pfcmpge pfcmpgt pfmax pfmin pfmul
pfnacc pfpnacc pfrcp pfrcpit1 pfrcpit2
pfrsqit1 pfrsqrt pfsub pfsubr pi2fd
pmulhrw pswapd

CHAPTER3
Appendices

3.1.
Interfacing to C

D is designed to fit comfortably with a C compiler for the target system. D makes
up for not having its own VM by relying on the target environment’s C runtime
library. It would be senseless to attempt to port to D or write D wrappers for the
vast array of C APIs available. How much easier it is to just call them directly.

This is done by matching the C compiler’s data types, layouts, and function
call/return sequences.

3.1.1. Calling C Functions

C functions can be called directly from D. There is no need for wrapper functions,
argument swizzling, and the C functions do not need to be put into a separate
DLL.

The C function must be declared and given a calling convention, most likely
the "C" calling convention, for example:

extern (C) int strcmp(char *string1, char *string2);

and then it can be called within D code in the obvious way:

import std.string;
int myDfunction(char[] s)
{

return strcmp(std.string.toCharz(s), "foo 0");
}

There are several things going on here:

174

Chapter 3. Appendices 175

• D understands how C function names are "mangled" and the correct C
function call/return sequence.

• C functions cannot be overloaded with another C function with the same
name.

• There are no __cdecl, __far, __stdcall, __declspec, or other such C type
modifiers in D. These are handled by attributes, such as extern (C).

• There are no const or volatile type modifiers in D. To declare a C function
that uses those type modifiers, just drop those keywords from the decla-
ration.

• Strings are not 0 terminated in D. See "Data Type Compatibility" for more
information about this.

C code can correspondingly call D functions, if the D functions use an at-
tribute that is compatible with the C compiler, most likely the extern (C):

// myfunc() can be called from any C function
extern (C)
{

void myfunc(int a, int b)
{

...
}

}

3.1.2. Storage Allocation

C code explicitly manages memory with calls to malloc() and free(). D allocates
memory using the D garbage collector, so no explicit free’s are necessary.

D can still explicitly allocate memory using c.stdlib.malloc() and c.stdlib.free(),
these are useful for connecting to C functions that expect malloc’d buffers, etc.

If pointers to D garbage collector allocated memory are passed to C func-
tions, it’s critical to ensure that that memory will not be collected by the garbage
collector before the C function is done with it. This is accomplished by:

• Making a copy of the data using c.stdlib.malloc() and passing the copy
instead.

• Leaving a pointer to it on the stack (as a parameter or automatic variable),
as the garbage collector will scan the stack.

• Leaving a pointer to it in the static data segment, as the garbage collector
will scan the static data segment.

176 3.1. Interfacing to C

• Registering the pointer with the garbage collector with the gc.addRoot()
or gc.addRange() calls.

An interior pointer to the allocated memory block is sufficient to let the GC
know the object is in use; i.e. it is not necessary to maintain a pointer to the
beginning of the allocated memory.

The garbage collector does not scan the stacks of threads not created by the
D Thread interface. Nor does it scan the data segments of other DLL’s, etc.

3.1.3. Data Type Compatibility

D type C type
void void
bit no equivalent
byte signed char
ubyte unsigned char
char char (chars are unsigned in D)
wchar wchar_t
short short
ushort unsigned short
int int
uint unsigned
long long long
ulong unsigned long long
float float
double double
extended long double
imaginary long double _Imaginary
complex long double _Complex
type* type *
type[dim] type[dim]
type[] no equivalent
type[type] no equivalent
"string0" "string" or L"string"
class no equivalent
type(*)(parameters) type(*)(parameters)

These equivalents hold for most 32 bit C compilers. The C standard does not
pin down the sizes of the types, so some care is needed.

3.1.4. Calling printf()

This mostly means checking that the printf format specifier matches the cor-
responding D data type. Although printf is designed to handle 0 terminated

Chapter 3. Appendices 177

strings, not D dynamic arrays of chars, it turns out that since D dynamic arrays
are a length followed by a pointer to the data, the %.*s format works perfectly:

void foo(char[] string)
{

printf("my string is: %.*s n", string);
}

Astute readers will notice that the printf format string literal in the example
doesn’t end with 0. This is because string literals, when they are not part of an
initializer to a larger data structure, have a 0 character helpfully stored after the
end of them.

3.1.5. Structs and Unions

D structs and unions are analogous to C’s.
C code often adjusts the alignment and packing of struct members with

a command line switch or with various implementation specific #pragma’s. D
supports explicit alignment attributes that correspond to the C compiler’s rules.
Check what alignment the C code is using, and explicitly set it for the D struct
declaration.

D does not support bit fields. If needed, they can be emulated with shift and
mask operations.

3.2.
Interfacing to C++

D does not provide an interface to C++. Since D, however, interfaces directly to
C, it can interface directly to C++ code if it is declared as having C linkage.

D class objects are incompatible with C++ class objects.

3.3.
Portability Guide

It’s good software engineering practice to minimize gratuitous portability prob-
lems in the code. Techniques to minimize potential portability problems are:

• The integral and floating type sizes should be considered as minimums.
Algorithms should be designed to continue to work properly if the type
size increases.

• Floating point computations can be carried out at a higher precision than
the size of the floating point variable can hold. Floating point algorithms
should continue to work properly if precision is arbitrarilly increased.

178 3.3. Portability Guide

• Avoid depending on the order of side effects in a computation that may
get reordered by the compiler. For example:

a + b + c

can be evaluated as (a + b) + c, a + (b + c), (a + c) + b, (c + b) + a, etc.
Parenthesis control operator precedence, parenthesis do not control order
of evaluation.

In particular, function parameters can be evaluated either left to right or
right to left, depending on the particular calling conventions used.

• Avoid dependence on byte order; i.e. whether the CPU is big-endian or
little-endian.

• Avoid dependence on the size of a pointer or reference being the same
size as a particular integral type.

• If size dependencies are inevitable, put an assert in the code to verify it:

assert(int.size == (int*).size);

3.3.1. 32 to 64 Bit Portability

64 bit processors and operating systems are coming. With that in mind:

• Integral types will remain the same sizes between 32 and 64 bit code.

• Pointers and object references will increase in size from 4 bytes to 8 bytes
going from 32 to 64 bit code.

• Use size_t as an alias for an unsigned integral type that can span the ad-
dress space.

• Use ptrdiff_t as an alias for a signed integral type that can span the ad-
dress space.

• The .length, .size, .sizeof, and .alignof properties will be of type size_t.

3.3.2. OS Specific Code

System specific code is handled by isolating the differences into separate mod-
ules. At compile time, the correct system specific module is imported.

Minor differences can be handled by constant defined in a system specific
import, and then using that constant in an if statement.

Chapter 3. Appendices 179

3.4.
Embedding D in HTML

The D compiler is designed to be able to extract and compile D code embed-
ded within HTML files. This capability means that D code can be written to be
displayed within a browser utilizing the full formatting and display capability of
HTML.

For example, it is possible to make all uses of a class name actually be hy-
perlinks to where the class is defined. There’s nothing new to learn for the per-
son browsing the code, he just uses the normal features of an HTML browser.
Strings can be displayed in green, comments in red, and keywords in boldface,
for onepossibility. It is even possible to embed pictures in the code, as normal
HTML image tags.

Embedding D in HTML makes it possible to put the documentation for code
and the code itself all together in one file. It is no longer necessary to relegate
documentation in comments, to be extracted later by a tech writer. The code
and the documentation for it can be maintained simultaneously, with no dupli-
cation of effort.

How it works is straightforward. If the source file to the compiler ends in.htm
or.html, the code is assumed to be embedded in HTML. The source is then pre-
processed by stripping all text outside of and tags. Then, all other HTML tags are
stripped, and embedded character encodings are converted to ASCII. All new-
lines in the original HTML remain in their corresponding positions in the prepro-
cessed text, so the debug line numbers remain consistent. The resulting text is
then fed to the D compiler.

3.5.
MISSING: model.html

3.6.
MISSING: phobos.html

3.7.
D for Win32

This describes the D implementation for 32 bit Windows systems. Naturally, Win-
dows specific D features are not portable to other platforms.

Instead of the:

#include <windows.h>

of C, in D there is:

180 3.7. D for Win32

import std.c.windows.windows;

3.7.1. Calling Conventions

In C, the Windows API calling conventions are __stdcall. In D, it is simply:

extern (Windows)
{

... function declarations...
}

The Windows linkage attribute sets both the calling convention and the name
mangling scheme to be compatible with Windows.

For functions that in C would be __declspec(dllimport) or __declspec(dllexport),
use the export attribute:

export void func(int foo);

If no function body is given, it’s imported. If a function body is given, it’s
exported.

3.7.2. Windows Executables

Windows GUI applications can be written with D. A sample such can be found in
dmd samples d winsamp.d

These are required:

1. Instead of a main function serving as the entry point, a WinMain function
is needed.

2. WinMain must follow this form:

import std.c.windows.windows;

extern (C) void gc_init(); extern (C) void gc_term(); extern (C)
void _minit(); extern (C) void _moduleCtor(); extern (C) void
_moduleUnitTests();

extern (Windows) int WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
int result;

Chapter 3. Appendices 181

gc_init(); // initialize garbage collector
_minit(); // initialize module constructor table

try
{

_moduleCtor(); // call module constructors
_moduleUnitTests(); // run unit tests (optional)

result = doit(); // insert user code here
}

catch (Object o) // catch any uncaught exceptions
{

MessageBoxA(null, (char *)o.toString(), "Error",
MB_OK | MB_ICONEXCLAMATION);

result = 0; // failed
}

gc_term(); // run finalizers; terminate garbage collector
return result;

}

The doit() function is where the user code goes, the rest of WinMain is
boilerplate to initialize and shut down the D runtime system.

3. A.def (Module DefinitionFile) with at least the following two lines in it:

EXETYPE NT SUBSYSTEM WINDOWS

Without those, Win32 will open a text console window whenever the ap-
plication is run.

4. The presence of WinMain() is recognized by the compiler causing it to
emit a reference to __acrtused_dlland the phobos.lib runtime library.

3.7.3. DLLs (Dynamic Link Libraries)

DLLs can be created in D in roughly the same way as in C. A DllMain() is re-
quired, looking like:

import std.c.windows.windows;
HINSTANCE g_hInst;

extern (C)
{

void gc_init();
void gc_term();
void _minit();
void _moduleCtor();

182 3.7. D for Win32

void _moduleUnitTests();
}

extern (Windows)
BOOL DllMain (HINSTANCE hInstance, ULONG ulReason, LPVOID pvReserved)
{

switch (ulReason)
{

case DLL_PROCESS_ATTACH:
gc_init(); // initialize GC
_minit(); // initialize module list
_moduleCtor(); // run module constructors
_moduleUnitTests(); // run module unit tests
break;

case DLL_PROCESS_DETACH:
gc_term(); // shut down GC
break;

case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:

// Multiple threads not supported yet
return false;

}
g_hInst=hInstance;
return true;

}

Notes:

• The _moduleUnitTests() call is optional.

• It’s a little crude, I hope to improve it.

• The presence of DllMain() is recognized by the compiler causing it to
emit a reference to __acrtused_dlland the phobos.lib runtime library.

Link with a.def (Module DefinitionFile) along the lines of:

LIBRARY MYDLL
DESCRIPTION ’My DLL written in D’

EXETYPE NT
CODE PRELOAD DISCARDABLE
DATA PRELOAD SINGLE

EXPORTS
DllGetClassObject @2
DllCanUnloadNow @3
DllRegisterServer @4
DllUnregisterServer @5

Chapter 3. Appendices 183

The functions in the EXPORTS list are for illustration. Replace them with the
actual exported functions from MYDLL.

Memory Allocation

D DLLs use garbage collected memory management. The question is what hap-
pens when pointers to allocated data cross DLL boundaries? Other DLLs, or
callers to a D DLL, may even be written in another language and may have no
idea how to interface with D’s garbage collector.

There are many approaches to solving this problem. The most practical ap-
proaches are to assume that other DLLs have no idea about D. To that end, one
of these should work:

• Do not return pointers to D gc allocated memory to the caller of the DLL.
Instead, have the caller allocate a buffer, and have the DLL fill in that buffer.

• Retain a pointer to the data within the D DLL so the GC will not free it.
Establish a protocol where the caller informs the D DLL when it is safe to
free the data.

• Use operating system primitives like VirtualAlloc() to allocate memory to
be transferred between DLLs.

• Use COM interfaces, rather than D class objects. D supports the AddRef()/Release()
protocol for COM interfaces. Most languages implemented on Win32 have
support for COM, making it a good choice.

3.7.4. COM Programming

Many Windows API interfaces are in terms of COM (Common Object Model) ob-
jects (also called OLE or ActiveX objects). A COM object is an object who’s first
field is a pointer to a vtbl[], and the first 3 entries in that vtbl[] are for QueryIn-
terface(), AddRef(), and Release().

COM objects are analogous to D interfaces. Any COM object can be ex-
pressed as a D interface, and every D object with an interface X can be exposed
as a COM object X. This means that D is compatible with COM objects imple-
mented in other languages.

While not strictly necessary, the Phobos library provides an Object useful as
a super class for all D COM objects, called ComObject. ComObject provides a
default implementation for QueryInterface(), AddRef(), and Release().

Windows COM objects use the Windows calling convention, which is not the
default for D, so COM functions need to have the attribute extern (Windows). So,
to write a COM object:

184 3.8. Converting C .h Files to D Modules

import std.c.windows.com;

class MyCOMobject : ComObject
{

extern (Windows):
...

}

The sample code includes an example COM client program and server DLL.

3.8.
Converting C .h Files to D Modules

While D cannot directly compile C source code, it can easilly interface to C code,
be linked with C object files, and call C functions in DLLs. The interface to C
code is normally found in C .h files. So, the trick to connecting with C code is in
converting C .h files to D modules. This turns out to be difficult to do mechan-
ically since inevitably some human judgement must be applied. This is a guide
to doing such conversions.

Preprocessor .h files can sometimes be a bewildering morass of layers of
macros, #include files, #ifdef ’s, etc. D doesn’t support a text preprocessor,
so the first step is to remove the need for it by taking the preprocessed output.
For DMC (the Digital Mars C/C++ compiler), the command:

dmc -c program.h -e -l

will create a file program.lst which is the source file after all text prepro-
cessing.

Remove all the #if, #ifdef, #include , etc. statements.

Linkage Generally, surround the entire module with:

extern (C)
{

...file contents...
}

to give it C linkage.

Chapter 3. Appendices 185

Types A little global search and replace will take care of renaming the C types
to D types. The following table shows a typical mapping for 32 bit C code:

C type D type
long double real
unsigned long long ulong
long long long
unsigned long uint
long int
unsigned uint
unsigned short ushort
signed char byte
unsigned char ubyte
wchar_t wchar or dchar
bool int

NULL Or ((void*)0) should be replaced with null.

Numeric Literals Any ’L’ or ’l’ numeric literal suffixes should be removed, as
a C long is (usually) the same size as a D int. Similarly, ’LL’ suffixes should be
replaced with a single ’L’. Any ’u’ suffix will work the same in D.

String Literals In most cases, any ’L’ prefix to a string can just be dropped, as
D will implicitly convert strings to wide characters if necessary. However, one
can also replace:

L"string"

with:

cast(wchar[])"string"

Macros Lists of macros like:

#define FOO 1
#define BAR 2
#define ABC 3
#define DEF 40

can be replaced with:

enum
{ FOO = 1,

186 3.8. Converting C .h Files to D Modules

BAR = 2,
ABC = 3,
DEF = 40

}

or with:

const int FOO = 1;
const int BAR = 2;
const int ABC = 3;
const int DEF = 40;

Function style macros, such as:

#define MAX(a,b) ((a) < (b) ? (b) : (a))

can be replaced with functions:

int MAX(int a, int b) { return (a < b) ? b : a); }

Declaration Lists D doesn’t allow declaration lists to change the type. Hence:

int *p, q, t[3], *s;

should be written as:

int* p, s;
int q;
int[3] t;

Void Parameter Lists Functions that take no parameters:

int foo(void);

are in D:

int foo();

Chapter 3. Appendices 187

Const Type Modifiers D has const as a storage class, not a type modifier.
Hence, just drop any const used as a type modifier:

void foo(const int *p, char *const q);

becomes:

void foo(int* p, char* q);

Typedef alias is the D equivalent to the C typedef :

typedef int foo;

becomes:

alias int foo;

Structs Replace declarations like:

typedef struct Foo
{ int a;

int b;
} Foo, *pFoo, *lpFoo;

with:

struct Foo
{ int a;

int b;
}
alias Foo* pFoo, lpFoo;

Struct Member Alignment A good D implementation by default will align
struct members the same way as the C compiler it was designed to work with.
But if the .h file has some #pragma ’s to control alignment, they can be dupli-
cated with the D align attribute:

#pragma pack(1)
struct Foo
{

int a;
int b;

} ;
#pragma pack()

188 3.8. Converting C .h Files to D Modules

becomes:

struct Foo
{

align (1):
int a;
int b;

}

Nested Structs

struct Foo
{

int a;
struct Bar
{

int c;
} bar;

} ;

struct Abc
{

int a;
struct
{

int c;
} bar;

} ;

becomes:

struct Foo
{

int a;
struct Bar
{

int c;
}
Bar bar;

} ;

struct Abc
{

int a;
struct
{

int c;
}

} ;

Chapter 3. Appendices 189

__cdecl, __pascal, __stdcall

int __cdecl x;
int __cdecl foo(int a);
int __pascal bar(int b);
int __stdcall abc(int c);

become:

extern (C) int x;
extern (C) int foo(int a);
extern (Pascal) int bar(int b);
extern (Windows) int abc(int c);

__declspec(dllimport)

__declspec(dllimport) int __stdcall foo(int a);

becomes:

export extern (Windows) int foo(int a);

__fastcall Unfortunately, D doesn’t support the __fastcall convention.
Therefore, a shim will be needed, either written in C:

int __fastcall foo(int a);

int myfoo(int a)
{

return foo(int a);
}

and compiled with a C compiler that supports __fastcall and linked in, or
compile the above, disassemble it with obj2asm andinsert it in a D myfoo shim
with inline assembler.

3.9.
The D Style

The D Style is a set of style conventions for writing D programs. The D Style is not
enforced by the compiler, it is purely cosmetic and a matter of choice. Adhering
to the D Style, however, will make it easier for others to work with your D code
and easier for you to work with others’ D code. The D Style can form the starting
point for a D project style guide customized for your project team.

190 3.9. The D Style

White Space

• One statement per line.

• Two or more spaces per indentation level.

• Operators are separated by single spaces from their operands.

• Two blank lines separating function bodies.

• One blank line separating variable declarations from statements in func-
tion bodies.

Comments

• Use // comments to document a single line:

statement; // comment
statement; // comment

• Use block comments to document a multiple line block of statements:

/*
* comment
* comment
*/
statement;
statement;

• Use nesting comments to ’comment out’ a piece of trial code:

/+++++
/*
* comment
* comment
*/
statement;
statement;

+++++/

Naming Conventions

• General Names formed by joining multiple works should have each word
other than the first capitalized.

int myFunc();

Chapter 3. Appendices 191

• Module Module names are all lower case. This avoids problems dealing
with case insensitive file systems.

• C Modules Modules that are interfaces to C functions go into the "c" pack-
age, for example:

import std.c.stdio;

Module names should be all lower case.

• Class, Struct, Union, Enum names are capitalized.

class Foo;
class FooAndBar;

• Function names Function names are not capitalized.

int done();
int doneProcessing();

• Const names Are in all caps.

• Enum member names Are in all caps.

Meaningless Type Aliases

Things like:

alias void VOID;
alias int INT;
alias int* pint;

should be avoided.

Declaration Style

Since in D the declarations are left-associative, left justify them:

int[] x, y; // makes it clear that x and y are the same type
int** p, q; // makes it clear that p and q are the same type

to emphasize their relationship. Do not use the C style:

int []x, y; // confusing since y is also an int[]
int **p, q; // confusing since q is also an int**

192 3.10. Example: wc

Operator Overloading

Operator overloading is a powerful tool to extend the basic types supported by
the language. But being powerful, it has great potential for creating obfuscated
code. In particular, the existing D operators have conventional meanings, such
as ’+’ means ’add’ and ’«’ means ’shift left’. Overloading operator ’+’ with a mean-
ing different from ’add’ is arbitrarilly confusing and should be avoided.

Hungarian Notation

Just say no.

3.10.
Example: wc

This program is the D version of the classic wc (wordcount) C program. It serves
to demonstrate how to read files, slice arrays, and simple symbol table manage-
ment with associative arrays.

import std.file;

int main (char[][] args) {
int w_total;
int l_total;
int c_total;

printf (" lines words bytes file n");
foreach (char[] arg; args[1.. args.length])
{

char[] input;
int w_cnt, l_cnt, c_cnt;
int inword;

input = cast(char[])std.file.read(arg);

foreach (char c; input)
{

if (c == ’ n’)
++l_cnt;

if (c != ’ ’)
{

if (!inword)
{

inword = 1;
++w_cnt;

}
}
else

inword = 0;

Chapter 3. Appendices 193

++c_cnt;
}
printf ("%8lu%8lu%8lu %.*s n", l_cnt, w_cnt, c_cnt, arg);
l_total += l_cnt;
w_total += w_cnt;
c_total += c_cnt;

}
if (args.length > 2)
{

printf ("-------------------------------------- n%8lu%8lu%8lu total",
l_total, w_total, c_total);

}
return 0;

}

3.11.
Compiler for D Programming Language

• D for Win32

• D for x86 Linux

• general

3.11.1. Files Common to Win32 and Linux

•
dmd
src
phobos
D runtime library source

•
dmd
src
dmd
D compiler front end source under dual (GPL and Artistic) license

•
dmd
html
d
Documentation

•
dmd
samples

194 3.12. Win32 D Compiler

d
Sample D programs

3.12.
Win32 D Compiler

3.12.1. Files

• dmd bin dmd.exe D compiler executable

• dmd bin shell.exe Simple command line shell

• dmd bin sc.ini Global compiler settings

• dmd lib phobos.lib D runtime library

3.12.2. Requirements

• 32 bit Windows operating system

• D compiler for Win32

• linker and utilities for Win32

3.12.3. Installation

Unzip the files in the root directory. It will create a dmd directory with all
the files in it. All the tools are command line tools, which means they are run
from a console window. Create a console window in Windows XP by clicking on
[Start][Command Prompt].

3.12.4. Example

Run:

dmd bin shell all.sh

in the dmd samples d directory for several small examples.

Chapter 3. Appendices 195

3.12.5. Compiler Arguments and Switches

• dmd files... -switch...

• files...

Extension File Type
none D source files
.d D source files
.obj Object files to link in
.exe Name output executable file
.def module definition file
.res resource file

• -c compile only, do not link

• -d allow deprecated features

• -debug compile in debug code

• -debug= level compile in debug code <= level

• -debug= ident compile in debug code identified by ident

• -g add symbolic debug info

• -gt add trace profiling hooks

• -inline inline expand functions

• -I path where to look for imports. path is a ; separated list of paths. Multi-
ple -I ’s can be used, and the paths are searched in the same order.

• -L linkerflag pass linkerflag to the linker, for example, /ma/li

• -O optimize

• -od objdir write object files relative to directory objdir instead of to the
current directory

• -of filename set output file name to filename in the output directory

• -op normally the path for .d source files is stripped off when generating
an object file name. -op will leave it on.

• -release compile release version

• -unittest compile in unittest code

• -v verbose

196 3.12. Win32 D Compiler

• -version= level compile in version code >= level

• -version= ident compile in version code identified by ident

3.12.6. Linking

Linking is done directly by the dmd compiler after a successful compile. To pre-
vent dmd from running the linker, use the -c switch.

The programs must be linked with the D runtime library phobos.lib, fol-
lowed by the C runtime library snn.lib. This is done automatically as long as the
directories for the libraries are on the LIB environment variable path. A typical
way to set LIB would be:

set LIB= dmd lib; dm lib

3.12.7. Environment Variables

The D compiler dmd uses the following environment variables:

• DFLAGS The value of DFLAGS is treated as if it were appended to the
command line to dmd.exe.

• LIB The linker uses LIB to search for library files. For D, it will normally be
set to:

set LIB= dmd lib; dm lib

• LINKCMD dmd normally runs the linker by looking for link.exe along the
PATH. To use a specific linker instead, set the LINKCMD environment vari-
able to it. For example:

set LINKCMD= dm bin link

• PATH If the linker is not found in the same directory as dmd.exe is in, the
PATH is searched for it. Note: other linkers named link.exe will likely not
work. Make sure the Digital Mars link.exe is found first in the PATH before
other link.exe ’s, or use LINKCMD to specifically identify which linker to
use.

Chapter 3. Appendices 197

3.12.8. SC.INI Initialization File

dmd will look for the initialization file sc.ini in the same directory dmd.exe
resides in. If found, environment variable settings in the file will override any
existing settings. This is handy to make dmd independent of programs with
conflicting use of environment variables.

Environment variables follow the [Environment] section heading, in name=value
pairs. Comments are lines that start with ;. For example:

; sc.ini file for dmd
; Names enclosed by %% are searched for in the existing environemnt
; and inserted. The special name %@P% is replaced with the path
; to this file.
[Environment]
LIB="%@P%.̇ lib"; dm lib
DFLAGS="-I%@P%.̇ src phobos"
LINKCMD="%@P%.̇.̇ dm bin"

3.13.
Linux D Compiler

3.13.1. Files

• /dmd/bin/dmd D compiler executable

• /dmd/bin/dumpobj Elf file dumper

• /dmd/bin/obj2asm Elf file disassembler

• /dmd/bin/dmd.conf Global compiler settings (copy to /etc/dmd.conf)

• /dmd/lib/libphobos.aD runtime library (copy to /usr/lib/libphobos.a
)

3.13.2. Requirements

• 32 bit x86 Linux operating system

• D compiler for Linux

• Gnu C compiler (gcc)

198 3.13. Linux D Compiler

3.13.3. Installation

1. Unzip the archive into your home directory. It will create a ˜/dmd directory
with all the files in it. All the tools are command line tools, which means
they are run from a console window.

2. Edit the file ˜/dmd/bin/dmd.conf to put the path in to where the phobos
source files are.

3. Copy dmd.conf to /etc :

cp dmd/bin/dmd.conf /etc

4. Give execute permission to the following files:

chmod u+x dmd/bin/dmd dmd/bin/obj2asm dmd/bin/dumpobj

5. Put dmd/binon your PATH, or copy the linux executables to /usr/local/bin

6. Copy the library to /usr/lib :

cp dmd/lib/libphobos.a /usr/lib

3.13.4. Compiler Arguments and Switches

• dmd files... -switch...

• files...

Extension File Type
none D source files
.d D source files
.o Object files to link in
.a Library files to link in

• -c compile only, do not link

• -d allow deprecated features

• -debug compile in debug code

• -debug= level compile in debug code <= level

• -debug= ident compile in debug code identified by ident

• -g add symbolic debug info

Chapter 3. Appendices 199

• -gt add trace profiling hooks (not supported under linux)

• -inline inline expand functions

• -I path where to look for imports. path is a ; separated list of paths. Multi-
ple -I ’s can be used, and the paths are searched in the same order.

• -L linkerflag pass linkerflag to the linker, for example, -M

• -O optimize

• -od objdir write object files relative to directory objdir instead of to the
current directory

• -of filename set output file name to filename in the output directory

• -op normally the path for .d source files is stripped off when generating
an object file name. -op will leave it on.

• -release compile release version

• -unittest compile in unittest code

• -v verbose

• -version= level compile in version code >= level

• -version= ident compile in version code identified by ident

3.13.5. Linking

Linking is done directly by the dmd compiler after a successful compile. To pre-
vent dmd from running the linker, use the -c switch.

The actual linking is done by running gcc. This ensures compatibility with
modules compiled with gcc.

3.13.6. Environment Variables

The D compiler dmd uses the following environment variables:

• DFLAGS The value of DFLAGS is treated as if it were appended to the
command line to dmd.

200 3.14. General

3.13.7. dmd.conf Initialization File

dmd will look for the initialization file dmd.conf in the directory /etc. If found,
environment variable settings in the file will override any existing settings. This
is handy to make dmd independent of programs with conflicting use of envi-
ronment variables.

Environment variables follow the [Environment] section heading, in name=value
pairs. Comments are lines that start with ;. For example:

; dmd.conf file for dmd
; Names enclosed by %% are searched for in the existing environemnt
; and inserted. The special name %@P% is replaced with the path
; to this file.
[Environment]
DFLAGS="-I%@P%.̇ src phobos"

3.13.8. Differences from Win32 version

• String literals are read-only. Attempting to write to them will cause a seg-
ment violation.

• The configuration file is /etc/dmd.conf

3.13.9. Linux Bugs

• -g is not implemented, because I haven’t figured out how to do it yet. gdb
still works, though, at the global symbol level.

• The code generator output has not been tuned yet, so it can be bloated.

• Shared libraries cannot be generated.

• The exception handling is not compatible with the way g++ does it. I don’t
know if this is an issue or not.

3.14.
General

3.14.1. Bugs

These are some of the major bugs:

• The compiler quits on the first error, and sometimes gets the line number
wrong.

• The phobos D runtime library is inadequate.

Chapter 3. Appendices 201

• Need to write a tool to convert C.h files into D imports.

• Array op= operations are not implemented.

• Property gettor/settor not implemented.

• In preconditions and out postconditions for member functions are not in-
herited.

• It cannot be run from the IDDE.

3.14.2. Feedback

We welcome all feedback - kudos, flames, bugs, suggestions, hints, and most es-
pecially donated code! Join the fray in the D forum.

3.15.
Acknowledgements

The following people have contributed to the D language project; with ideas,
code, expertise, marketing, inspiration and moral support.

Bruce Eckel, Eric Engstrom, Jan Knepper, Helmut Leitner, LubomirLitchev,
Pavel Minayev, Paul Nash, Pat Nelson, Burton Radons, Tim Rentsch, Fabio Ric-
cardi, Bob Taniguchi, John Whited, Matthew Wilson, Peter Zatloukal

